Semin Plast Surg 2022; 36(03): 149-157
DOI: 10.1055/s-0042-1754387
Review Article

Virtual Planning and 3D Printing in the Management of Acute Orbital Fractures and Post-Traumatic Deformities

Basel Sharaf
1   Division of Plastic Surgery, Mayo Clinic, Rochester, Minnesota
,
Daniel E. Leon
1   Division of Plastic Surgery, Mayo Clinic, Rochester, Minnesota
,
Lilly Wagner
2   Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
,
Jonathan M. Morris
3   Department of Radiology, Anatomic Modeling Unit, Mayo Clinic, Rochester, Minnesota
,
Cristina A. Salinas
1   Division of Plastic Surgery, Mayo Clinic, Rochester, Minnesota
› Author Affiliations

Abstract

Virtual surgical planning (VSP) and three-dimensional (3D) printing have advanced surgical reconstruction of orbital defects. Individualized 3D models of patients' orbital bony and soft tissues provide the surgeon with corrected orbital volume based on normalized anatomy, precise location of critical structures, and when needed a better visualization of the defect or altered anatomy that are paramount in preoperative planning. The use of 3D models preoperatively allows surgeons to improve the accuracy and safety of reconstruction, reduces intraoperative time, and most importantly lowers the rate of common postoperative complications, including over- or undercontouring of plates, orbital implant malposition, enophthalmos, and hypoglobus. As 3D printers and materials become more accessible and cheaper, the utility of printing patient-specific implants becomes more feasible. This article summarizes the traditional surgical management of orbital fractures and reviews advances in VSP and 3D printing in this field. It also discusses the use of in-house (point-of-care) VSP and 3D printing to further advance care of acute orbital trauma and posttraumatic deformities.



Publication History

Article published online:
07 December 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Shui W, Zhou M, Chen S. et al. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques. Int J CARS 2017; 12 (01) 13-23
  • 2 Sharaf B, Kuruoglu D, Cantwell SR, Alexander AE, Dickens HJ, Morris JM. EPPOCRATIS: expedited preoperative point-of-care reduction of fractures to normalized anatomy and three-dimensional printing to improve surgical outcomes. Plast Reconstr Surg 2022; 149 (03) 695-699
  • 3 Holmes S. Primary orbital fracture repair. Atlas Oral Maxillofac Surg Clin North Am 2021; 29 (01) 51-77
  • 4 Grob S, Yonkers M, Tao J. Orbital fracture repair. Semin Plast Surg 2017; 31 (01) 31-39
  • 5 Alinasab B, Beckman MO, Pansell T, Abdi S, Westermark AH, Stjärne P. Relative difference in orbital volume as an indication for surgical reconstruction in isolated orbital floor fractures. Craniomaxillofac Trauma Reconstr 2011; 4 (04) 203-212
  • 6 Bianchi F, De Haller R, Steffen H, Courvoisier DS, Scolozzi P. Does vertical incomitance predict the diplopia outcome in orbital fracture patients? A prospective study of 188 patients. J Craniomaxillofac Surg 2019; 47 (02) 305-310
  • 7 Dal Canto AJ, Linberg JV. Comparison of orbital fracture repair performed within 14 days versus 15 to 29 days after trauma. Ophthal Plast Reconstr Surg 2008; 24 (06) 437-443
  • 8 Boyette JR, Pemberton JD, Bonilla-Velez J. Management of orbital fractures: challenges and solutions. Clin Ophthalmol 2015; 9: 2127-2137
  • 9 Vasile VA, Istrate S, Iancu RC. et al. Biocompatible materials for orbital wall reconstruction-an overview. Materials (Basel) 2022; 15 (06) 2183
  • 10 Ellis III E, Tan Y. Assessment of internal orbital reconstructions for pure blowout fractures: cranial bone grafts versus titanium mesh. J Oral Maxillofac Surg 2003; 61 (04) 442-453
  • 11 Hammer B, Prein J. Correction of post-traumatic orbital deformities: operative techniques and review of 26 patients. J Craniomaxillofac Surg 1995; 23 (02) 81-90
  • 12 Gear AJ, Lokeh A, Aldridge JH, Migliori MR, Benjamin CI, Schubert W. Safety of titanium mesh for orbital reconstruction. Ann Plast Surg 2002; 48 (01) 1-7 , discussion 7–9
  • 13 Sugar AW, Kuriakose M, Walshaw ND. Titanium mesh in orbital wall reconstruction. Int J Oral Maxillofac Surg 1992; 21 (03) 140-144
  • 14 Sharma N, Welker D, Aghlmandi S. et al. A multi-criteria assessment strategy for 3D printed porous polyetheretherketone (PEEK) patient-specific implants for orbital wall reconstruction. J Clin Med 2021; 10 (16) 3563
  • 15 Chepurnyi Y, Chernogorskyi D, Kopchak A, Petrenko O. Clinical efficacy of peek patient-specific implants in orbital reconstruction. J Oral Biol Craniofac Res 2020; 10 (02) 49-53
  • 16 Akiki RK, Jehle CC, Crozier J, Woo AS. Using 3D printing and mirror image modeling in orbital floor reconstruction. J Craniofac Surg 2021; 32 (07) 2465-2467
  • 17 Schön R, Metzger MC, Zizelmann C, Weyer N, Schmelzeisen R. Individually preformed titanium mesh implants for a true-to-original repair of orbital fractures. Int J Oral Maxillofac Surg 2006; 35 (11) 990-995
  • 18 Blumer M, Essig H, Steigmiller K, Wagner ME, Gander T. Surgical outcomes of orbital fracture reconstruction using patient-specific implants. J Oral Maxillofac Surg 2021; 79 (06) 1302-1312
  • 19 Ma CY, Wang TH, Yu WC. et al. Accuracy of the application of 3-dimensional printing models in orbital blowout fractures-a preliminary study. Ann Plast Surg 2022; 88 (1s, Suppl 1) S33-S38
  • 20 Nikunen M, Rajantie H, Marttila E, Snäll J. Implant malposition and revision surgery in primary orbital fracture reconstructions. J Craniomaxillofac Surg 2021; 49 (09) 837-844
  • 21 Mims MM, Wang EW. Cost analysis of implants in the surgical repair of orbital floor fractures. Ann Otol Rhinol Laryngol 2020; 129 (05) 456-461
  • 22 Schlittler F, Vig N, Burkhard JP, Lieger O, Michel C, Holmes S. What are the limitations of the non-patient-specific implant in titanium reconstruction of the orbit?. Br J Oral Maxillofac Surg 2020; 58 (09) e80-e85
  • 23 Kitabata R, Uno K, Sakamoto Y. Reconstruction of combined orbital floor and medial wall fractures using custom-made titanium alloy implant. J Craniofac Surg 2021; 32 (04) e388-e389
  • 24 Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging applications of bedside 3D printing in plastic surgery. Front Surg 2015; 2: 25
  • 25 Callahan AB, Campbell AA, Petris C, Kazim M. Low-cost 3D printing orbital implant templates in secondary orbital reconstructions. Ophthal Plast Reconstr Surg 2017; 33 (05) 376-380
  • 26 Girotto JA, Gamble WB, Robertson B. et al. Blindness after reduction of facial fractures. Plast Reconstr Surg 1998; 102 (06) 1821-1834
  • 27 Cheon JS, Seo BN, Yang JY, Son KM. Retrobulbar hematoma in blow-out fracture after open reduction. Arch Plast Surg 2013; 40 (04) 445-449
  • 28 Kim JM. Retrobulbar hematoma following the repair of an orbital wall fracture: a case series. Maxillofac Plast Reconstr Surg 2021; 43 (01) 8
  • 29 Putterman AM, Stevens T, Urist MJ. Nonsurgical management of blow-out fractures of the orbital floor. Am J Ophthalmol 1974; 77 (02) 232-239
  • 30 Burnstine MA. Clinical recommendations for repair of isolated orbital floor fractures: an evidence-based analysis. Ophthalmology 2002; 109 (07) 1207-1210 , discussion 1210–1211, quiz 1212–1213
  • 31 Alinasab B, Borstedt KJ, Rudström R. et al. New algorithm for the management of orbital blowout fracture based on prospective study. Craniomaxillofac Trauma Reconstr 2018; 11 (04) 285-295
  • 32 Choi A, Sisson A, Olson K, Sivam S. Predictors of delayed enophthalmos after orbital fractures: a systematic review. Facial Plast Surg Aesthet Med 2022; 24 (05) 397-403
  • 33 He Y, Zhang Y, An JG. Correlation of types of orbital fracture and occurrence of enophthalmos. J Craniofac Surg 2012; 23 (04) 1050-1053
  • 34 Dvoracek LA, Lee JY, Unadkat JV. et al. Low-cost, three-dimensionally-printed, anatomical models for optimization of orbital wall reconstruction. Plast Reconstr Surg 2021; 147 (01) 162-166
  • 35 Hatz CR, Msallem B, Aghlmandi S, Brantner P, Thieringer FM. Can an entry-level 3D printer create high-quality anatomical models? Accuracy assessment of mandibular models printed by a desktop 3D printer and a professional device. Int J Oral Maxillofac Surg 2020; 49 (01) 143-148
  • 36 Andrades P, Cuevas P, Hernández R, Danilla S, Villalobos R. Characterization of the orbital volume in normal population. J Craniomaxillofac Surg 2018; 46 (04) 594-599
  • 37 Gosau M, Schöneich M, Draenert FG, Ettl T, Driemel O, Reichert TE. Retrospective analysis of orbital floor fractures–complications, outcome, and review of literature. Clin Oral Investig 2011; 15 (03) 305-313
  • 38 Oh TS, Jeong WS, Chang TJ, Koh KS, Choi JW. Customized orbital wall reconstruction using three-dimensionally printed rapid prototype model in patients with orbital wall fracture. J Craniofac Surg 2016; 27 (08) 2020-2024
  • 39 Jadhav C, Cunneen S. Three-dimensional printing technology for medial orbital wall fractures. J Craniofac Surg 2015; 26 (08) e799-e800
  • 40 Lor LS, Massary DA, Chung SA, Brown PJ, Runyan CM. Cost analysis for in-house versus industry-printed skull models for acute midfacial fractures. Plast Reconstr Surg Glob Open 2020; 8 (05) e2831
  • 41 Vatankhah R, Emadzadeh A, Nekooei S. et al. 3D printed models for teaching orbital anatomy, anomalies and fractures. J Ophthalmic Vis Res 2021; 16 (04) 611-619