Semin Neurol 2022; 42(05): 594-610
DOI: 10.1055/s-0042-1758779
Review Article

Prevention of Adverse Outcomes and Treatment Side Effects in Patients with Neuromuscular Disorders

1   Department of Neurology, Henry Ford Medical Group, Wayne State University, Detroit, Michigan
,
Naganand Sripathi
1   Department of Neurology, Henry Ford Medical Group, Wayne State University, Detroit, Michigan
› Author Affiliations

Abstract

In this article, we review prevention of serious adverse clinical outcomes and treatment side effects in patients with neuromuscular disorders including myopathies and myasthenia gravis. While neither of these entities is preventable, their course can often be modified, and severe sequelae may be prevented, with the identification of risk factors and proactive attention toward treatment planning.



Publication History

Article published online:
18 November 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Khan J, Harrison TB, Rich MM, Moss M. Early development of critical illness myopathy and neuropathy in patients with severe sepsis. Neurology 2006; 67 (08) 1421-1425
  • 2 Rich MM, Teener JW, Raps EC, Schotland DL, Bird SJ. Muscle is electrically inexcitable in acute quadriplegic myopathy. Neurology 1996; 46 (03) 731-736
  • 3 Showalter CJ, Engel AG. Acute quadriplegic myopathy: analysis of myosin isoforms and evidence for calpain-mediated proteolysis. Muscle Nerve 1997; 20 (03) 316-322
  • 4 Stevens RD, Dowdy DW, Michaels RK, Mendez-Tellez PA, Pronovost PJ, Needham DM. Neuromuscular dysfunction acquired in critical illness: a systematic review. Intensive Care Med 2007; 33 (11) 1876-1891
  • 5 Cheung K, Rathbone A, Melanson M, Trier J, Ritsma BR, Allen MD. Pathophysiology and management of critical illness polyneuropathy and myopathy. J Appl Physiol 2021; 130 (05) 1479-1489
  • 6 Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G. Clinical review: critical illness polyneuropathy and myopathy. Crit Care 2008; 12 (06) 238
  • 7 Koch S, Wollersheim T, Bierbrauer J. et al. Long-term recovery In critical illness myopathy is complete, contrary to polyneuropathy. Muscle Nerve 2014; 50 (03) 431-436
  • 8 Schmidt SB, Rollnik JD. Critical illness polyneuropathy (CIP) in neurological early rehabilitation: clinical and neurophysiological features. BMC Neurol 2016; 16 (01) 256
  • 9 Price DR, Mikkelsen ME, Umscheid CA, Armstrong EJ. Neuromuscular Blocking agents and neuromuscular dysfunction acquired in critical illness: A systematic review and meta-analysis. Crit Care Med 2016; 44 (11) 2070-2078 . Available at: Doi: 10.1097/CCM.0000000000001839. PMID: 27513545.
  • 10 Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G. Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database Syst Rev 2014; (01) CD006832
  • 11 Hickmann CE, Castanares-Zapatero D, Deldicque L. et al. Impact of very early physical therapy during septic shock on skeletal muscle: a randomized controlled trial. Crit Care Med 2018; 46 (09) 1436-1443
  • 12 Zhou C, Wu L, Ni F, Ji W, Wu J, Zhang H. Critical illness polyneuropathy and myopathy: a systematic review. Neural Regen Res 2014; 9 (01) 101-110
  • 13 Mansoor O, Breuillé D, Béchereau F. et al. Effect of an enteral diet supplemented with a specific blend of amino acid on plasma and muscle protein synthesis in ICU patients. Clin Nutr 2007; 26 (01) 30-40
  • 14 McGlory C, Gorissen SHM, Kamal M. et al. Omega-3 fatty acid supplementation attenuates skeletal muscle disuse atrophy during two weeks of unilateral leg immobilization in healthy young women. FASEB J 2019; 33 (03) 4586-4597
  • 15 Amato AA, Griggs RC. Unicorns, dragons, polymyositis, and other mythological beasts. Neurology 2003; 61 (03) 288-289
  • 16 Schmidt J. Current classification and management of inflammatory myopathies. J Neuromuscul Dis 2018; 5 (02) 109-129
  • 17 Furst DE, Amato AA, Iorga SR, Gajria K, Fernandes AW. Epidemiology of adult idiopathic inflammatory myopathies in a U.S. managed care plan. Muscle Nerve 2012; 45 (05) 676-683
  • 18 Mariampillai K, Granger B, Amelin D. et al. Development of a new classification system for idiopathic inflammatory myopathies based on clinical manifestations and myositis-specific autoantibodies. JAMA Neurol 2018; 75 (12) 1528-1537
  • 19 Miller FW, Lamb JA, Schmidt J, Nagaraju K. Risk factors and disease mechanisms in myositis. Nat Rev Rheumatol 2018; 14 (05) 255-268
  • 20 Kuo CF, Grainge MJ, Valdes AM. et al. Familial aggregation of systemic lupus erythematosus and coaggregation of autoimmune diseases in affected families. JAMA Intern Med 2015; 175 (09) 1518-1526
  • 21 Kuo CF, Luo SF, Yu KH, See LC, Zhang W, Doherty M. Familial risk of systemic sclerosis and co-aggregation of autoimmune diseases in affected families. Arthritis Res Ther 2016; 18 (01) 231
  • 22 Miller FW, Chen W, O'Hanlon TP. et al; Myositis Genetics Consortium. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun 2015; 16 (07) 470-480
  • 23 Rothwell S, Cooper RG, Lundberg IE. et al; Myositis Genetics Consortium. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis 2016; 75 (08) 1558-1566
  • 24 Rothwell S, Cooper RG, Lundberg IE. et al; Myositis Genetics Consortium. Immune-array analysis in sporadic inclusion body myositis reveals HLA-DRB1 amino acid heterogeneity across the myositis spectrum. Arthritis Rheumatol 2017; 69 (05) 1090-1099
  • 25 Miller FW, Alfredsson L, Costenbader KH. et al. Epidemiology of environmental exposures and human autoimmune diseases: findings from a National Institute of Environmental Health Sciences Expert Panel Workshop. J Autoimmun 2012; 39 (04) 259-271
  • 26 Love LA, Miller FW. Noninfectious environmental agents associated with myopathies. Curr Opin Rheumatol 1993; 5 (06) 712-718
  • 27 Reed AM, Ytterberg SR. Genetic and environmental risk factors for idiopathic inflammatory myopathies. Rheum Dis Clin North Am 2002; 28 (04) 891-916
  • 28 Miller FW. Non-infectious environmental agents and autoimmunity. In: Rose NR, Mackay IR. eds. The Autoimmune Diseases. Vol. 4. Elsevier; 2006: 297-308
  • 29 Miller FW. Classification of idiopathic inflammatory myopathies. In: Kagen L. ed. The Inflammatory Myopathies. Springer; 2009: 15-28
  • 30 Gan L, Miller FW. State of the art: what we know about infectious agents and myositis. Curr Opin Rheumatol 2011; 23 (06) 585-594
  • 31 Allen JA, Peterson A, Sufit R. et al. Post-epidemic eosinophilia-myalgia syndrome associated with L-tryptophan. Arthritis Rheum 2011; 63 (11) 3633-3639
  • 32 Cukier J, Beauchamp RA, Spindler JS, Spindler S, Lorenzo C, Trentham DE. Association between bovine collagen dermal implants and a dermatomyositis or a polymyositis-like syndrome. Ann Intern Med 1993; 118 (12) 920-928
  • 33 O'Hanlon T, Koneru B, Bayat E. et al; Environmental Myositis Study Group. Immunogenetic differences between Caucasian women with and those without silicone implants in whom myositis develops. Arthritis Rheum 2004; 50 (11) 3646-3650
  • 34 Love LA, Weinberg CR, McConnaughey DR. et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum 2009; 60 (08) 2499-2504
  • 35 Webber MP, Moir W, Zeig-Owens R. et al. Nested case-control study of selected systemic autoimmune diseases in World Trade Center rescue/recovery workers. Arthritis Rheumatol 2015; 67 (05) 1369-1376
  • 36 Labirua-Iturburu A, Selva-O'Callaghan A, Zock JP, Orriols R, Martínez-Gómez X, Vilardell-Tarrés M. Occupational exposure in patients with the antisynthetase syndrome. Clin Rheumatol 2014; 33 (02) 221-225
  • 37 Uruha A, Noguchi S, Hayashi YK. et al. Hepatitis C virus infection in inclusion body myositis: a case-control study. Neurology 2016; 86 (03) 211-217
  • 38 Johnson RW, Williams FM, Kazi S, Dimachkie MM, Reveille JD. Human immunodeficiency virus-associated polymyositis: a longitudinal study of outcome. Arthritis Rheum 2003; 49 (02) 172-178
  • 39 Carroll MB, Holmes R. Dermatomyositis and HIV infection: case report and review of the literature. Rheumatol Int 2011; 31 (05) 673-679
  • 40 Dalakas MC, Rakocevic G, Shatunov A, Goldfarb L, Raju R, Salajegheh M. Inclusion body myositis with human immunodeficiency virus infection: four cases with clonal expansion of viral-specific T cells. Ann Neurol 2007; 61 (05) 466-475
  • 41 Matsuura E, Umehara F, Nose H. et al. Inclusion body myositis associated with human T-lymphotropic virus-type I infection: eleven patients from an endemic area in Japan. J Neuropathol Exp Neurol 2008; 67 (01) 41-49
  • 42 Calore EE, Minkovski R, Khoury Z, Seguro AC, Perez Calore NM, Cavaliere MJ. Skeletal muscle pathology in 2 siblings infected with Toxoplasma gondii . J Rheumatol 2000; 27 (06) 1556-1559
  • 43 Svensson J, Holmqvist M, Lundberg IE, Arkema EV. Infections and respiratory tract disease as risk factors for idiopathic inflammatory myopathies: a population-based case-control study. Ann Rheum Dis 2017; 76 (11) 1803-1808
  • 44 Lyon MG, Bloch DA, Hollak B, Fries JF. Predisposing factors in polymyositis-dermatomyositis: results of a nationwide survey. J Rheumatol 1989; 16 (09) 1218-1224
  • 45 Carroll GJ, Will RK, Peter JB, Garlepp MJ, Dawkins RL. Penicillamine induced polymyositis and dermatomyositis. J Rheumatol 1987; 14 (05) 995-1001
  • 46 Somani AK, Swick AR, Cooper KD, McCormick TS. Severe dermatomyositis triggered by interferon beta-1a therapy and associated with enhanced type I interferon signaling. Arch Dermatol 2008; 144 (10) 1341-1349
  • 47 Touat M, Maisonobe T, Knauss S. et al. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology 2018; 91 (10) e985-e994
  • 48 Principi N, Esposito S. Aluminum in vaccines: Does it create a safety problem?. Vaccine 2018; 36 (39) 5825-5831
  • 49 Orione MA, Silva CA, Sallum AM. et al. Risk factors for juvenile dermatomyositis: exposure to tobacco and air pollutants during pregnancy. Arthritis Care Res (Hoboken) 2014; 66 (10) 1571-1575
  • 50 Chinoy H, Adimulam S, Marriage F. et al. Interaction of HLA-DRB1*03 and smoking for the development of anti-Jo-1 antibodies in adult idiopathic inflammatory myopathies: a European-wide case study. Ann Rheum Dis 2012; 71 (06) 961-965
  • 51 Mugii N, Hasegawa M, Matsushita T. et al. Oropharyngeal dysphagia in dermatomyositis: associations with clinical and laboratory features including autoantibodies. PLoS One 2016; 11 (05) e0154746
  • 52 Ponyi A, Constantin T, Garami M. et al. Cancer-associated myositis: clinical features and prognostic signs. Ann N Y Acad Sci 2005; 1051: 64-71
  • 53 Zeng R, Schmidt J. Impact and management of dysphagia in inflammatory myopathies. Curr Rheumatol Rep 2020; 22 (10) 74
  • 54 Lilleker JB, Vencovsky J, Wang G. et al; All EuroMyositis Contributors. The EuroMyositis registry: an international collaborative tool to facilitate myositis research. Ann Rheum Dis 2018; 77 (01) 30-39
  • 55 Dobloug C, Garen T, Bitter H. et al. Prevalence and clinical characteristics of adult polymyositis and dermatomyositis; data from a large and unselected Norwegian cohort. Ann Rheum Dis 2015; 74 (08) 1551-1556
  • 56 Marie I, Menard J-F, Hatron PY. et al. Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis: a series of 73 patients. Arthritis Care Res (Hoboken) 2010; 62 (12) 1748-1755
  • 57 Oh TH, Brumfield KA, Hoskin TL, Stolp KA, Murray JA, Bassford JR. Dysphagia in inflammatory myopathy: clinical characteristics, treatment strategies, and outcome in 62 patients. Mayo Clin Proc 2007; 82 (04) 441-447
  • 58 Malandraki GA, Kaufman A, Hind J. et al. The effects of lingual intervention in a patient with inclusion body myositis and Sjögren's syndrome: a longitudinal case study. Arch Phys Med Rehabil 2012; 93 (08) 1469-1475
  • 59 Mendelsohn MS, McConnel FM. Function in the pharyngoesophageal segment. Laryngoscope 1987; 97 (04) 483-489
  • 60 Kahrilas PJ, Logemann JA, Krugler C, Flanagan E. Volitional augmentation of upper esophageal sphincter opening during swallowing. Am J Physiol 1991; 260 (3, Pt 1): G450-G456
  • 61 Bodén K, Hallgren A, Witt Hedström H. Effects of three different swallow maneuvers analyzed by videomanometry. Acta Radiol 2006; 47 (07) 628-633
  • 62 O'Keeffe ST. Use of modified diets to prevent aspiration in oropharyngeal dysphagia: is current practice justified?. BMC Geriatr 2018; 18 (01) 167
  • 63 Schrey A, Airas L, Jokela M, Pulkkinen J. Botulinum toxin alleviates dysphagia of patients with inclusion body myositis. J Neurol Sci 2017; 380: 142-147
  • 64 Ogawa-Momohara M, Muro Y, Kono M, Akiyama M. Prognosis of dysphagia in dermatomyositis. Clin Exp Rheumatol 2019; 37 (01) 165
  • 65 Miyasaka N, Hara M, Koike T, Saito E, Yamada M, Tanaka Y. GB-0998 Study Group. Effects of intravenous immunoglobulin therapy in Japanese patients with polymyositis and dermatomyositis resistant to corticosteroids: a randomized double-blind placebo-controlled trial. Mod Rheumatol 2012; 22 (03) 382-393
  • 66 Marie I, Hachulla E, Levesque H. et al. Intravenous immunoglobulins as treatment of life threatening esophageal involvement in polymyositis and dermatomyositis. J Rheumatol 1999; 26 (12) 2706-2709
  • 67 Dalakas MC, Sonies B, Dambrosia J, Sekul E, Cupler E, Sivakumar K. Treatment of inclusion-body myositis with IVIg: a double-blind, placebo-controlled study. Neurology 1997; 48 (03) 712-716
  • 68 Dobloug C, Walle-Hansen R, Gran JT, Molberg Ø. Long-term follow-up of sporadic inclusion body myositis treated with intravenous immunoglobulin: a retrospective study of 16 patients. Clin Exp Rheumatol 2012; 30 (06) 838-842
  • 69 Cherin P, Delain J-C, de Jaeger C, Crave J-C. Subcutaneous immunoglobulin use in inclusion body myositis: a review of 6 cases. Case Rep Neurol 2015; 7 (03) 227-232
  • 70 Oh TH, Brumfield KA, Hoskin TL, Kasperbauer JL, Basford JR. Dysphagia in inclusion body myositis: clinical features, management, and clinical outcome. Am J Phys Med Rehabil 2008; 87 (11) 883-889
  • 71 Murata K-Y, Kouda K, Tajima F, Kondo T. Balloon dilation in sporadic inclusion body myositis patients with dysphagia. Clin Med Insights Case Rep 2013; 6: 1-7
  • 72 Schneider I, Thumfart WF, Pototschnig C, Eckel HE. Treatment of dysfunction of the cricopharyngeal muscle with botulinum A toxin: introduction of a new, noninvasive method. Ann Otol Rhinol Laryngol 1994; 103 (01) 31-35
  • 73 Kelly EA, Koszewski IJ, Jaradeh SS, Merati AL, Blumin JH, Bock JM. Botulinum toxin injection for the treatment of upper esophageal sphincter dysfunction. Ann Otol Rhinol Laryngol 2013; 122 (02) 100-108
  • 74 Danon MJ, Friedman M. Inclusion body myositis associated with progressive dysphagia: treatment with cricopharyngeal myotomy. Can J Neurol Sci 1989; 16 (04) 436-438
  • 75 Lega JC, Fabien N, Reynaud Q. et al. The clinical phenotype associated with myositis-specific and associated autoantibodies: a meta-analysis revisiting the so-called antisynthetase syndrome. Autoimmun Rev 2014; 13 (09) 883-891
  • 76 Morganroth PA, Kreider ME, Okawa J, Taylor L, Werth VP. Interstitial lung disease in classic and skin-predominant dermatomyositis: a retrospective study with screening recommendations. Arch Dermatol 2010; 146 (07) 729-738
  • 77 Moghadam-Kia S, Aggarwal R, Oddis CV. Myositis in clinical practice-relevance of new antibodies. Best Pract Res Clin Rheumatol 2018; 32 (06) 887-901
  • 78 Bradley B, Branley HM, Egan JJ. et al; British Thoracic Society Interstitial Lung Disease Guideline Group, British Thoracic Society Standards of Care Committee, Thoracic Society of Australia, New Zealand Thoracic Society, Irish Thoracic Society. Interstitial lung disease guideline: the British thoracic society in collaboration with the thoracic society of Australia and New Zealand and the Irish thoracic society. Thorax 2008; 63 (Suppl. 05) v1-v58
  • 79 Saketkoo LA, Mittoo S, Huscher D. et al; CTD-ILD Special Interest Group. Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials. Thorax 2014; 69 (05) 428-436
  • 80 Zahr ZA, Baer AN. Malignancy in myositis. Curr Rheumatol Rep 2011; 13 (03) 208-215
  • 81 Selva-O'Callaghan A, Trallero-Araguás E, Grau-Junyent JM, Labrador-Horrillo M. Malignancy and myositis: novel autoantibodies and new insights. Curr Opin Rheumatol 2010; 22 (06) 627-632
  • 82 Qiang JK, Kim WB, Baibergenova A, Alhusayen R. Risk of malignancy in dermatomyositis and polymyositis. J Cutan Med Surg 2017; 21 (02) 131-136
  • 83 Olazagasti JM, Baez PJ, Wetter DA, Ernste FC. Cancer risk in dermatomyositis: a meta-analysis of cohort studies. Am J Clin Dermatol 2015; 16 (02) 89-98
  • 84 Kadoya M, Hida A, Hashimoto Maeda M. et al. Cancer association as a risk factor for anti-HMGCR antibody-positive myopathy. Neurol Neuroimmunol Neuroinflamm 2016; 3 (06) e290
  • 85 Peñate Y, Guillermo N, Melwani P, Martel R, Hernández-Machín B, Borrego L. Calcinosis cutis associated with amyopathic dermatomyositis: response to intravenous immunoglobulin. J Am Acad Dermatol 2009; 60 (06) 1076-1077
  • 86 Traineau H, Aggarwal R, Monfort JB. et al. Treatment of calcinosis cutis in systemic sclerosis and dermatomyositis: a review of the literature. J Am Acad Dermatol 2020; 82 (02) 317-325
  • 87 Malignant Hyperthermia Association of the United States. MH-susceptibility and operating room personnel: defining the risks. 2017 . Accessed June 13, 2017 at: http://www.mhaus.org/healthcareprofessionals/mhaus-recommendations/malignant-hyperthermia-susceptibleoperating-room-personnel
  • 88 Beebe D, Puram VV, Gajic S, Thyagarajan B, Belani KG. Genetics of malignant hyperthermia: a brief update. J Anaesthesiol Clin Pharmacol 2020; 36 (04) 552-555
  • 89 Rosenberg H, Davis M, James D, Pollock N, Stowell K. Malignant hyperthermia. Orphanet J Rare Dis 2007; 2: 21
  • 90 Monnier N, Krivosic-Horber R, Payen JF. et al. Presence of two different genetic traits in malignant hyperthermia families: implication for genetic analysis, diagnosis, and incidence of malignant hyperthermia susceptibility. Anesthesiology 2002; 97 (05) 1067-1074
  • 91 Ording H. Epidemiology of malignant hyperthermia. In: Schulte Am EschJ, Scholz J, Wappler F. eds. Malignant Hyperthermia. Lengerich, Germany: Pabst Science Publishers; 2000
  • 92 Denborough MA, Forster JF, Lovell RR, Maplestone PA, Villiers JD. Anaesthetic deaths in a family. Br J Anaesth 1962; 34: 395-396
  • 93 Schneiderbanger D, Johannsen S, Roewer N, Schuster F. Management of malignant hyperthermia: diagnosis and treatment. Ther Clin Risk Manag 2014; 10: 355-362
  • 94 Britt BA, Kalow W. Malignant hyperthermia: a statistical review. Can Anaesth Soc J 1970; 17 (04) 293-315
  • 95 Brady JE, Sun LS, Rosenberg H, Li G. Prevalence of malignant hyperthermia due to anesthesia in New York State, 2001-2005. Anesth Analg 2009; 109 (04) 1162-1166
  • 96 Hopkins PM. Malignant hyperthermia: pharmacology of triggering. Br J Anaesth 2011; 107 (01) 48-56
  • 97 Glahn KP, Ellis FR, Halsall PJ. et al; European Malignant Hyperthermia Group. Recognizing and managing a malignant hyperthermia crisis: guidelines from the European Malignant Hyperthermia Group. Br J Anaesth 2010; 105 (04) 417-420
  • 98 Schuster F, Müller-Reible CR. Malignant hyperthermia – diagnostics, treatment and anaesthetic management [article German]. Anasthesiol Intensivmed Notfallmed Schmerzther 2009; 44 (11-12): 758-763, quiz 764
  • 99 Huerta-Alardín AL, Varon J, Marik PE. Bench-to-bedside review: rhabdomyolysis – an overview for clinicians. Crit Care 2005; 9 (02) 158-169
  • 100 Kasaoka S, Todani M, Kaneko T. et al. Peak value of blood myoglobin predicts acute renal failure induced by rhabdomyolysis. J Crit Care 2010; 25 (04) 601-604
  • 101 Torres PA, Helmstetter JA, Kaye AM, Kaye AD. Rhabdomyolysis: pathogenesis, diagnosis, and treatment. Ochsner J 2015; 15 (01) 58-69
  • 102 Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med 2009; 361 (01) 62-72
  • 103 Antons KA, Williams CD, Baker SK, Phillips PS. Clinical perspectives of statin-induced rhabdomyolysis. Am J Med 2006; 119 (05) 400-409
  • 104 Al-Ismaili Z, Piccioni M, Zappitelli M. Rhabdomyolysis: pathogenesis of renal injury and management. Pediatr Nephrol 2011; 26 (10) 1781-1788
  • 105 Kim J, Lee J, Kim S, Ryu HY, Cha KS, Sung DJ. Exercise-induced rhabdomyolysis mechanisms and prevention: a literature review. J Sport Health Sci 2016; 5 (03) 324-333
  • 106 Jacobson TA. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol 2004; 94 (09) 1140-1146
  • 107 Safitri N, Alaina MF, Pitaloka DAE, Abdulah R. A narrative review of statin-induced rhabdomyolysis: molecular mechanism, risk factors, and management. Drug Healthc Patient Saf 2021; 13: 211-219
  • 108 Elsayed EF, Reilly RF. Rhabdomyolysis: a review, with emphasis on the pediatric population. Pediatr Nephrol 2010; 25 (01) 7-18
  • 109 Cervellin G, Comelli I, Lippi G. Rhabdomyolysis: historical background, clinical, diagnostic and therapeutic features. Clin Chem Lab Med 2010; 48 (06) 749-756
  • 110 Emery AE. Population frequencies of inherited neuromuscular diseases – a world survey. Neuromuscul Disord 1991; 1 (01) 19-29
  • 111 Bushby K, Muntoni F, Bourke JP. 107th ENMC international workshop: the management of cardiac involvement in muscular dystrophy and myotonic dystrophy. 7th-9th June 2002, Naarden, the Netherlands. Neuromuscul Disord 2003; 13 (02) 166-172
  • 112 Birnkrant DJ, Bushby K, Bann CM. et al; DMD Care Considerations Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol 2018; 17 (04) 347-361
  • 113 Duboc D, Meune C, Lerebours G, Devaux JY, Vaksmann G, Bécane HM. Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J Am Coll Cardiol 2005; 45 (06) 855-857
  • 114 Ramaciotti C, Heistein LC, Coursey M. et al. Left ventricular function and response to enalapril in patients with Duchenne muscular dystrophy during the second decade of life. Am J Cardiol 2006; 98 (06) 825-827
  • 115 Buyse GM, Voit T, Schara U. et al; DELOS Study Group. Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): a double-blind randomised placebo-controlled phase 3 trial. Lancet 2015; 385 (9979): 1748-1757
  • 116 Hoogerwaard EM, van der Wouw PA, Wilde AA. et al. Cardiac involvement in carriers of Duchenne and Becker muscular dystrophy. Neuromuscul Disord 1999; 9 (05) 347-351
  • 117 Bécane HM, Bonne G, Varnous S. et al. High incidence of sudden death with conduction system and myocardial disease due to lamins A and C gene mutation. Pacing Clin Electrophysiol 2000; 23 (11, Pt 1): 1661-1666
  • 118 Fayssoil A, Ogna A, Chaffaut C. et al. Natural history of cardiac and respiratory involvement, prognosis and predictive factors for long-term survival in adult patients with limb girdle muscular dystrophies type 2C and 2D. PLoS One 2016; 11 (04) e0153095
  • 119 Beynon RP, Ray SG. Cardiac involvement in muscular dystrophies. QJM 2008; 101 (05) 337-344
  • 120 Sveen ML, Thune JJ, Køber L, Vissing J. Cardiac involvement in patients with limb-girdle muscular dystrophy type 2 and Becker muscular dystrophy. Arch Neurol 2008; 65 (09) 1196-1201
  • 121 Smith CA, Gutmann L. Myotonic dystrophy type 1 management and therapeutics. Curr Treat Options Neurol 2016; 18 (12) 52
  • 122 Groh WJ, Groh MR, Saha C. et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med 2008; 358 (25) 2688-2697
  • 123 Wahbi K, Meune C, Porcher R. et al. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. JAMA 2012; 307 (12) 1292-1301
  • 124 Sheikh S, Alvi U, Soliven B, Rezania K. Drugs that induce or cause deterioration of myasthenia gravis: an update. J Clin Med 2021; 10 (07) 1537
  • 125 Krenn M, Grisold A, Wohlfarth P. et al. Pathomechanisms and clinical implications of myasthenic syndromes exacerbated and induced by medical treatments. Front Mol Neurosci 2020; 13: 156
  • 126 Kim P, Arnold M, Gunti J. Five-month trial of whole-food plant-based diet in a patient with coexisting myasthenia gravis and Lambert-Eaton myasthenic syndrome. Am J Lifestyle Med 2021; 15 (03) 230-237
  • 127 Xin Y, Cai H, Wu L, Cui Y. The effect of immunonutrition on the postoperative complications in thymoma with myasthenia gravis. Mediators Inflamm 2016; 2016: 8781740
  • 128 Beydoun SR, Wang J, Levine RL, Farvid A. Emotional stress as a trigger of myasthenic crisis and concomitant takotsubo cardiomyopathy: a case report. J Med Case Reports 2010; 4: 393
  • 129 Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol 2017; 32 (05) 541-556
  • 130 Biswas A, Oh PI, Faulkner GE. et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med 2015; 162 (02) 123-132
  • 131 Warburton DE, Bredin SS. Reflections on physical activity and health: what should we recommend?. Can J Cardiol 2016; 32 (04) 495-504
  • 132 Sharif K, Watad A, Bragazzi NL, Lichtbroun M, Amital H, Shoenfeld Y. Physical activity and autoimmune diseases: get moving and manage the disease. Autoimmun Rev 2018; 17 (01) 53-72
  • 133 Anziska Y, Sternberg A. Exercise in neuromuscular disease. Muscle Nerve 2013; 48 (01) 3-20
  • 134 Fregonezi GA, Resqueti VR, Güell R, Pradas J, Casan P. Effects of 8-week, interval-based inspiratory muscle training and breathing retraining in patients with generalized myasthenia gravis. Chest 2005; 128 (03) 1524-1530
  • 135 Rassler B, Marx G, Hallebach S, Kalischewski P, Baumann I. Long-term respiratory muscle endurance training in patients with myasthenia gravis: first results after four months of training. Autoimmune Dis 2011; 2011: 808607
  • 136 Freitag S, Hallebach S, Baumann I, Kalischewski P, Rassler B. Effects of long-term respiratory muscle endurance training on respiratory and functional outcomes in patients with Myasthenia gravis. Respir Med 2018; 144: 7-15
  • 137 O'Connor L, Westerberg E, Punga AR. Myasthenia gravis and physical exercise: a novel paradigm. Front Neurol 2020; 11: 675
  • 138 Gilhus NE. Physical training and exercise in myasthenia gravis. Neuromuscul Disord 2021; 31 (03) 169-173
  • 139 Liu XX, Zhu XM, Miao Q, Ye HY, Zhang ZY, Li YM. Hyperglycemia induced by glucocorticoids in nondiabetic patients: a meta-analysis. Ann Nutr Metab 2014; 65 (04) 324-332
  • 140 Donihi AC, Raval D, Saul M, Korytkowski MT, DeVita MA. Prevalence and predictors of corticosteroid-related hyperglycemia in hospitalized patients. Endocr Pract 2006; 12 (04) 358-362
  • 141 Gurwitz JH, Bohn RL, Glynn RJ, Monane M, Mogun H, Avorn J. Glucocorticoids and the risk for initiation of hypoglycemic therapy. Arch Intern Med 1994; 154 (01) 97-101
  • 142 Blackburn D, Hux J, Mamdani M. Quantification of the risk of corticosteroid-induced diabetes mellitus among the elderly. J Gen Intern Med 2002; 17 (09) 717-720
  • 143 Grob D, Brunner N, Namba T, Pagala M. Lifetime course of myasthenia gravis. Muscle Nerve 2008; 37 (02) 141-149
  • 144 Gonzalez-Gonzalez JG, Mireles-Zavala LG, Rodriguez-Gutierrez R. et al. Hyperglycemia related to high-dose glucocorticoid use in noncritically ill patients. Diabetol Metab Syndr 2013; 5: 18
  • 145 Clore JN, Thurby-Hay L. Glucocorticoid-induced hyperglycemia. Endocr Pract 2009; 15 (05) 469-474
  • 146 Kim SY, Yoo CG, Lee CT. et al. Incidence and risk factors of steroid-induced diabetes in patients with respiratory disease. J Korean Med Sci 2011; 26 (02) 264-267
  • 147 American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021; 44 (Suppl. 01) S15-S33 [Erratum in: Diabetes Care 2021;44(9):2182. PMID: 33298413]
  • 148 Aberer F, Hochfellner DA, Sourij H, Mader JK. A practical guide for the management of steroid induced hyperglycaemia in the hospital. J Clin Med 2021; 10 (10) 2154
  • 149 Burt MG, Willenberg VM, Petersons CJ, Smith MD, Ahern MJ, Stranks SN. Screening for diabetes in patients with inflammatory rheumatological disease administered long-term prednisolone: a cross-sectional study. Rheumatology (Oxford) 2012; 51 (06) 1112-1119
  • 150 Farmakidis C, Pasnoor M, Dimachkie MM, Barohn RJ. Treatment of myasthenia gravis. Neurol Clin 2018; 36 (02) 311-337
  • 151 Costello RE, Yimer BB, Roads P, Jani M, Dixon WG. Glucocorticoid use is associated with an increased risk of hypertension. Rheumatology (Oxford) 2021; 60 (01) 132-139
  • 152 Panoulas VF, Douglas KMJ, Stavropoulos-Kalinoglou A. et al. Long-term exposure to medium-dose glucocorticoid therapy associates with hypertension in patients with rheumatoid arthritis. Rheumatology (Oxford) 2008; 47 (01) 72-75
  • 153 Sato A, Funder JW, Okubo M, Kubota E, Saruta T. Glucocorticoid-induced hypertension in the elderly. Relation to serum calcium and family history of essential hypertension. Am J Hypertens 1995; 8 (08) 823-828
  • 154 Macfarlane DP, Forbes S, Walker BR. Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol 2008; 197 (02) 189-204
  • 155 Christ-Crain M, Kola B, Lolli F. et al. AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing's syndrome. FASEB J 2008; 22 (06) 1672-1683
  • 156 Fardet L, Cabane J, Kettaneh A, Lebbé C, Flahault A. Corticosteroid-induced lipodystrophy is associated with features of the metabolic syndrome. Rheumatology (Oxford) 2007; 46 (07) 1102-1106
  • 157 Pinheiro CH, Sousa Filho WM, Oliveira Neto Jd. et al. Exercise prevents cardiometabolic alterations induced by chronic use of glucocorticoids. Arq Bras Cardiol 2009; 93 (04) 400-408 , 392–400
  • 158 Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 2011; 60 (11) 1500-1510
  • 159 Bujalska IJ, Kumar S, Hewison M, Stewart PM. Differentiation of adipose stromal cells: the roles of glucocorticoids and 11beta-hydroxysteroid dehydrogenase. Endocrinology 1999; 140 (07) 3188-3196
  • 160 Fardet L, Flahault A, Kettaneh A. et al. Corticosteroid-induced clinical adverse events: frequency, risk factors and patient's opinion. Br J Dermatol 2007; 157 (01) 142-148
  • 161 Fardet L, Cabane J, Lebbé C, Morel P, Flahault A. Incidence and risk factors for corticosteroid-induced lipodystrophy: a prospective study. J Am Acad Dermatol 2007; 57 (04) 604-609
  • 162 Fardet L, Petersen I, Nazareth I. Risk of cardiovascular events in people prescribed glucocorticoids with iatrogenic Cushing's syndrome: cohort study. BMJ 2012; 345: e4928
  • 163 Curtis JR, Westfall AO, Allison J. et al. Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheum 2006; 55 (03) 420-426
  • 164 Fardet L, Antuna-Puente B, Vatier C. et al. Adipokine profile in glucocorticoid-treated patients: baseline plasma leptin level predicts occurrence of lipodystrophy. Clin Endocrinol (Oxf) 2013; 78 (01) 43-51
  • 165 Kok C, Sambrook PN. Secondary osteoporosis in patients with an osteoporotic fracture. Best Pract Res Clin Rheumatol 2009; 23 (06) 769-779
  • 166 Cauley JA, Danielson ME, Boudreau RM. et al; Health ABC Study. Inflammatory markers and incident fracture risk in older men and women: the Health Aging and Body Composition Study. J Bone Miner Res 2007; 22 (07) 1088-1095
  • 167 Yeh JH, Chen HJ, Chen YK, Chiu HC, Kao CH. Increased risk of osteoporosis in patients with myasthenia gravis: a population-based cohort study. Neurology 2014; 83 (12) 1075-1079
  • 168 Ton FN, Gunawardene SC, Lee H, Neer RM. Effects of low-dose prednisone on bone metabolism. J Bone Miner Res 2005; 20 (03) 464-470
  • 169 Liu Y, Porta A, Peng X. et al. Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k. J Bone Miner Res 2004; 19 (03) 479-490
  • 170 Russcher H, Smit P, van den Akker ELT. et al. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression. J Clin Endocrinol Metab 2005; 90 (10) 5804-5810
  • 171 van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 2002; 13 (10) 777-787
  • 172 Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res 2000; 15 (06) 993-1000
  • 173 Kanis JA, Johansson H, Oden A. et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 2004; 19 (06) 893-899
  • 174 Angeli A, Guglielmi G, Dovio A. et al. High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: a cross-sectional outpatient study. Bone 2006; 39 (02) 253-259
  • 175 Van Staa TP, Laan RF, Barton IP, Cohen S, Reid DM, Cooper C. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum 2003; 48 (11) 3224-3229
  • 176 van Staa TP, Geusens P, Pols HA, de Laet C, Leufkens HG, Cooper C. A simple score for estimating the long-term risk of fracture in patients using oral glucocorticoids. QJM 2005; 98 (03) 191-198
  • 177 Briot K, Cortet B, Roux C. et al; Bone Section of the French Society for Rheumatology (SFR) and Osteoporosis Research and Information Group (GRIO). 2014 update of recommendations on the prevention and treatment of glucocorticoid-induced osteoporosis. Joint Bone Spine 2014; 81 (06) 493-501
  • 178 Buckley L, Guyatt G, Fink HA. et al. 2017 American College of Rheumatology Guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol 2017; 69 (08) 1521-1537 [Erratum in: Arthritis Rheumatol 2017 Nov; 69(11):2246. PMID: 28585373]
  • 179 Conn HO, Blitzer BL. Nonassociation of adrenocorticosteroid therapy and peptic ulcer. N Engl J Med 1976; 294 (09) 473-479
  • 180 Messer J, Reitman D, Sacks HS, Smith Jr H, Chalmers TC. Association of adrenocorticosteroid therapy and peptic-ulcer disease. N Engl J Med 1983; 309 (01) 21-24
  • 181 Conn HO, Poynard T. Corticosteroids and peptic ulcer: meta-analysis of adverse events during steroid therapy. J Intern Med 1994; 236 (06) 619-632
  • 182 Narum S, Westergren T, Klemp M. Corticosteroids and risk of gastrointestinal bleeding: a systematic review and meta-analysis. BMJ Open 2014; 4 (05) e004587
  • 183 Smith M, Blaker P, Patel C. et al. The impact of introducing thioguanine nucleotide monitoring into an inflammatory bowel disease clinic. Int J Clin Pract 2013; 67 (02) 161-169
  • 184 Osterman MT, Kundu R, Lichtenstein GR, Lewis JD. Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology 2006; 130 (04) 1047-1053
  • 185 Sussman J, Farrugia ME, Maddison P, Hill M, Leite MI, Hilton-Jones D. Myasthenia gravis: Association of British Neurologists' management guidelines. Pract Neurol 2015; 15 (03) 199-206
  • 186 Ledingham J, Gullick N, Irving K. et al; BSR and BHPR Standards, Guidelines and Audit Working Group. BSR and BHPR guideline for the prescription and monitoring of non-biologic disease-modifying anti-rheumatic drugs. Rheumatology (Oxford) 2017; 56 (06) 865-868
  • 187 Warner B, Johnston E, Arenas-Hernandez M, Marinaki A, Irving P, Sanderson J. A practical guide to thiopurine prescribing and monitoring in IBD. Frontline Gastroenterol 2018; 9 (01) 10-15
  • 188 McWilliam M, Khan U. Azathioprine and the neurologist. Pract Neurol 2020; 20 (01) 69-74
  • 189 Allison AC, Eugui EM. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 2005; 80 (2, Suppl): S181-S190
  • 190 Schneider C, Gold R, Reiners K, Toyka KV. Mycophenolate mofetil in the therapy of severe myasthenia gravis. Eur Neurol 2001; 46 (02) 79-82
  • 191 Roberts DM, Jones RB, Smith RM. et al. Rituximab-associated hypogammaglobulinemia: incidence, predictors and outcomes in patients with multi-system autoimmune disease. J Autoimmun 2015; 57: 60-65
  • 192 Kridin K, Ahmed AR. Post-rituximab immunoglobulin M (IgM) hypogammaglobulinemia. Autoimmun Rev 2020; 19 (03) 102466
  • 193 Tieu J, Smith RM, Gopaluni S. et al. Rituximab associated hypogammaglobulinemia in autoimmune disease. Front Immunol 2021; 12: 671503
  • 194 Arroyo-Ávila M, Fred-Jiménez RM, Vilá LM. Early-onset neutropenia induced by rituximab in a patient with lupus nephritis and hemolytic anemia. Case Rep Rheumatol 2015; 2015: 616787
  • 195 Otrock ZK, Mahfouz RA, Oghlakian GO, Salem ZM, Bazarbachi A. Rituximab-induced acute thrombocytopenia: a report of two cases. Haematologica 2005; 90 (Suppl): ECR23
  • 196 Food and Drug Administration. Alexion briefing information for the November 18, 2014, Meeting of the Drug Safety and Risk Management Advisory Committee. Accessed October 25, 2022 at: https://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/DrugSafetyandRiskManagementAdvisoryCommittee/ucm423029.htm
  • 197 Food and Drug Administration. Soliris product insert. Silver Spring, MD: US Department of Health and Human Services, Food and Drug Administration; 2017 . Accessed October 25, 2022 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125166s417lbl.pdf
  • 198 CDC. Meningococcal ACIP recommendations. Atlanta, GA: US Department of Health and Human Services, CDC; 2017 . Accessed October 25, 2022 at: https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/mening.html
  • 199 McNamara LA, Topaz N, Wang X, Hariri S, Fox L, MacNeil JR. High risk for invasive meningococcal disease among patients receiving eculizumab (Soliris) despite receipt of meningococcal vaccine. MMWR Morb Mortal Wkly Rep 2017; 66 (27) 734-737
  • 200 Haut Conseil de la santé publique. Avis: actualisation de l'avis relatif à l'antibioprophylaxie et la vaccination méningococcique des personnes traitées par eculizumab (Soliris 300 mg solution à diluer pour perfusion) [French]. Paris, France: Haut Conseil de la Santé Publique; 2017. . Accessed October 25, 2022 at: http://www.hcsp.fr/Explore.cgi/avisrapportsdomaine?clefr=447
  • 201 Food and Drug Administration. . Accessed October 25, 2022 at: https://w.fda.gov/drugs/emergencypreparedness/bioterrorismanddrugpreparedness/ucm072755.html
  • 202 Matsumoto S, Kobayashi N, Gohya N. Clinical trials of sulfonated immunoglobulin preparation for intravenous administration. II. Adverse reactions. Eur J Pediatr 1981; 136 (02) 167-171
  • 203 Seidling V, Hoffmann JH, Enk AH, Hadaschik EN. Analysis of high-dose intravenous immunoglobulin therapy in 16 patients with refractory autoimmune blistering skin disease: high efficacy and no serious adverse events. Acta Derm Venereol 2013; 93 (03) 346-349
  • 204 Manlhiot C, Tyrrell PN, Liang L, Atkinson AR, Lau W, Feldman BM. Safety of intravenous immunoglobulin in the treatment of juvenile dermatomyositis: adverse reactions are associated with immunoglobulin A content. Pediatrics 2008; 121 (03) e626-e630
  • 205 Friedman DF, Lukas MB, Larson PJ, Douglas SD, Manno CS. Clinical impact of anti-D in intravenous immunoglobulin. Transfusion 1997; 37 (04) 450-452
  • 206 Rachid R, Bonilla FA. The role of anti-IgA antibodies in causing adverse reactions to gamma globulin infusion in immunodeficient patients: a comprehensive review of the literature. J Allergy Clin Immunol 2012; 129 (03) 628-634
  • 207 Guo Y, Tian X, Wang X, Xiao Z. Adverse effects of immunoglobulin therapy. Front Immunol 2018; 9: 1299
  • 208 Roberton DM, Hosking CS. Use of methylprednisolone as prophylaxis for immediate adverse infusion reactions in hypogammaglobulinaemic patients receiving intravenous immunoglobulin: a controlled trial. Aust Paediatr J 1988; 24 (03) 174-177
  • 209 Racosta JM, Sposato LA, Kimpinski K. Subcutaneous versus intravenous immunoglobulin for chronic autoimmune neuropathies: a meta-analysis. Muscle Nerve 2017; 55 (06) 802-809
  • 210 Mokrzycki MH, Kaplan AA. Therapeutic plasma exchange: complications and management. Am J Kidney Dis 1994; 23 (06) 817-827
  • 211 Owen HG, Brecher ME. Atypical reactions associated with use of angiotensin-converting enzyme inhibitors and apheresis. Transfusion 1994; 34 (10) 891-894
  • 212 Sergent SR, Ashurst JV. Plasmapheresis. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2022. . Accessed October 25, 2022 at: https://www.ncbi.nlm.nih.gov/books/NBK560566/
  • 213 Soares Ferreira Júnior A, Boyle SH, Kuchibhatla M, Onwuemene OA. Central venous catheters are associated with thrombosis among adult inpatients undergoing therapeutic plasma exchange. J Clin Apher 2022; 37 (04) 340-347
  • 214 Garcia X, Pye S, Tang X, Gossett J, Prodhan P, Bhutta A. Catheter-associated blood stream infections in intracardiac lines. J Pediatr Intensive Care 2017; 6 (03) 159-164
  • 215 van de Weerdt EK, Biemond BJ, Baake B. et al. Central venous catheter placement in coagulopathic patients: risk factors and incidence of bleeding complications. Transfusion 2017; 57 (10) 2512-2525
  • 216 Kolikof J, Peterson K, Baker AM. Central Venous Catheter. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2022. . Accessed October 25, 2022 at: https://www.ncbi.nlm.nih.gov/books/NBK557798/
  • 217 Lu W, Yu T, Longhini F, Jiang X, Qin X, Jin X. Preoperative risk factors for prolonged postoperative ventilation following thymectomy in myasthenia gravis. Int J Clin Exp Med 2015; 8 (08) 13990-13996
  • 218 Reis TA, Cataneo DC, Cataneo AJM. Clinical usefulness of prethymectomy plasmapheresis in patients with myasthenia gravis: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg 2019; 29 (06) 867-875
  • 219 Gamez J, Salvadó M, Carmona F. et al. Intravenous immunoglobulin to prevent myasthenic crisis after thymectomy and other procedures can be omitted in patients with well-controlled myasthenia gravis. Ther Adv Neurol Disord 2019; 12: 1756286419864497
  • 220 Alipour-Faz A, Shojaei M, Peyvandi H. et al. A comparison between IVIG and plasma exchange as preparations before thymectomy in myasthenia gravis patients. Acta Neurol Belg 2017; 117 (01) 245-249
  • 221 Jensen P, Bril V. A comparison of the effectiveness of intravenous immunoglobulin and plasma exchange as preoperative therapy of myasthenia gravis. J Clin Neuromuscul Dis 2008; 9 (03) 352-355
  • 222 Bichuetti-Silva DC, Furlan FP, Nobre FA. et al. Immediate infusion-related adverse reactions to intravenous immunoglobulin in a prospective cohort of 1765 infusions. Int Immunopharmacol 2014; 23 (02) 442-446
  • 223 Reddy DR, Guru PK, Blessing MM, Stubbs JR, Rabinstein AA, Wijdicks EF. Transfusion-related acute lung injury after IVIG for myasthenic crisis. Neurocrit Care 2015; 23 (02) 259-261
  • 224 Kumar R, Sedky MJ, Varghese SJ, Sharawy OE. Transfusion related acute lung injury (TRALI): a single institution experience of 15 years. Indian J Hematol Blood Transfus 2016; 32 (03) 320-327
  • 225 Brannagan III TH. Intravenous gammaglobulin (IVIg) for treatment of CIDP and related immune-mediated neuropathies. Neurology 2002; 59 (12, Suppl 6): S33-S40
  • 226 Cohen Aubart F, Barete S, Amoura Z, Francès C, Lyon-Caen O, Lebrun-Vignes B. Intravenous immunoglobulins-induced eczematous eruption: a long-term follow-up study. Eur J Intern Med 2009; 20 (01) 70-73
  • 227 Daniel GW, Menis M, Sridhar G. et al. Immune globulins and thrombotic adverse events as recorded in a large administrative database in 2008 through 2010. Transfusion 2012; 52 (10) 2113-2121
  • 228 Ramírez E, Romero-Garrido JA, López-Granados E. et al. Symptomatic thromboembolic events in patients treated with intravenous-immunoglobulins: results from a retrospective cohort study. Thromb Res 2014; 133 (06) 1045-1051
  • 229 Rajabally YA, Kearney DA. Thromboembolic complications of intravenous immunoglobulin therapy in patients with neuropathy: a two-year study. J Neurol Sci 2011; 308 (1-2): 124-127
  • 230 Sekul EA, Cupler EJ, Dalakas MC. Aseptic meningitis associated with high-dose intravenous immunoglobulin therapy: frequency and risk factors. Ann Intern Med 1994; 121 (04) 259-262
  • 231 Bharath V, Eckert K, Kang M, Chin-Yee IH, Hsia CC. Incidence and natural history of intravenous immunoglobulin-induced aseptic meningitis: a retrospective review at a single tertiary care center. Transfusion 2015; 55 (11) 2597-2605
  • 232 Stetefeld HR, Lehmann HC, Fink GR, Burghaus L. Posterior reversible encephalopathy syndrome and stroke after intravenous immunoglobulin treatment in Miller-Fisher syndrome/Bickerstaff brain stem encephalitis overlap syndrome. J Stroke Cerebrovasc Dis 2014; 23 (09) e423-e425
  • 233 Levine AA, Levine TD, Clarke K, Saperstein D. Renal and hematologic side effects of long-term intravenous immunoglobulin therapy in patients with neurologic disorders. Muscle Nerve 2017; 56 (06) 1173-1176
  • 234 Epstein JS, Zoon KC. Important drug warning: immune globulin intravenous (human) (IGIV) products. Neonatal Netw 2000; 19 (02) 60-62