Aktuelle Neurologie 2017; 44(06): 400-408
DOI: 10.1055/s-0043-103082
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Immuntherapie von Hirntumoren

Immunotherapy for Brain Tumors
Patrick Roth
Klinik für Neurologie und Hirntumorzentrum, UniversitätsSpital und Universität Zürich, Schweiz
,
Michael Weller
Klinik für Neurologie und Hirntumorzentrum, UniversitätsSpital und Universität Zürich, Schweiz
› Author Affiliations
Further Information

Publication History

Publication Date:
07 August 2017 (online)

Zusammenfassung

Immuntherapeutische Behandlungsansätze bei Hirntumoren werden schon seit Jahrzehnten als potenziell hilfreich und attraktiv angesehen. Im Gegensatz zum erheblich gestiegenen Verständnis der immunologischen Grundlagen von Tumoren im Gehirn waren die klinischen Fortschritte jedoch lange Zeit vergleichsweise bescheiden. Diese Situation hat sich in den letzten Jahren grundlegend geändert, u. a. durch die Entwicklung neuartiger Vakzinierungskonzepte. Impfstoffe, die aus einem oder mehreren Peptiden bestehen, befinden sich in einem fortgeschrittenen Stadium der klinischen Entwicklung zur Behandlung von Gliomen. Im Rahmen individualisierter Konzepte wird zudem versucht, Vakzinen herzustellen, deren Zusammensetzung auf einer umfangreichen Analyse des Tumorgewebes basiert und somit tumor- bzw. patientenspezifisch ist. Parallel wird derzeit in der Neuroonkologie die Wirksamkeit von Immun-Checkpoint-Inhibitoren untersucht. Diese Medikamente interagieren mit Immunzellrezeptoren, z. B. CTLA-4 oder PD-1, bzw. den dazugehörigen Liganden und sorgen für stärkere und anhaltende Immunantworten, u. a. auch gegen Tumorzellen. Mittlerweile sind immer mehr Daten verfügbar, die nahelegen, dass diese Immuntherapeutika bei Hirnmetastasen wirksam sein können. Unklar ist aber noch, ob auch Patienten mit primären Hirntumoren, z. B. Glioblastomen, von diesem Therapieansatz profitieren. Mehrere Studien untersuchen derzeit den Einsatz von Immun-Checkpoint-Inhibitoren allein oder in Kombination mit Strahlen- bzw. Chemotherapie bei Patienten mit neu diagnostiziertem oder rezidiviertem Glioblastom. Die Ergebnisse der laufenden Studien werden zeigen, ob sich immuntherapeutische Behandlungsansätze in Zukunft als Ergänzung zu den bisher zur Verfügung stehenden Therapieoptionen in der Neuro-Onkologie etablieren können.

Abstract

Immunotherapy has been regarded as a promising therapeutic strategy for brain tumor patients for decades. However, in contrast to the increasing understanding of the immunobiology of brain tumors, only very limited progress has been made in the clinical setting. This situation has now changed with the emergence of novel vaccination concepts. Advanced peptide vaccines comprise peptides from tumor-associated antigens or neoantigens that are exclusively expressed by tumor cells. Vaccines that are generated on an individual basis following large-scale assessments of a patient’s tumor are at an early stage of clinical development and may represent an ideal approach to specifically mount anti-tumor immune responses. Immune checkpoint inhibitors that target CTLA-4 or PD-1 may allow for a powerful activation of the immune system and represent another promising approach. There is an increasing body of evidence that these drugs can exert strong anti-tumor activity against neoplasms in the central nervous system. Therefore, checkpoint inhibitors are currently being investigated in various trials in patients with primary and metastatic brain tumors. Specifically, several trials aim at assessing the activity of antibodies targeting PD-1 or its major ligand, PD-L1, either alone or in combination with conventional treatment such as radiotherapy or alkylating chemotherapy in patients with newly diagnosed or recurrent glioblastoma. The results of the currently ongoing trials will demonstrate whether immunotherapy can be integrated into the standard of care for various brain tumors.

 
  • Literatur

  • 1 Platten M, Kretz A, Naumann U. et al. Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 2003; 54: 388-392
  • 2 Quail DF, Bowman RL, Akkari L. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 2016; 352 aad3018.
  • 3 DʼAgostino PM, Gottfried-Blackmore A, Anandasabapathy N. et al. Brain dendritic cells: biology and pathology. Acta Neuropathol 2012; 124: 599-614
  • 4 Osswald M, Blaes J, Liao Y. et al. Impact of Blood-Brain Barrier Integrity on Tumor Growth and Therapy Response in Brain Metastases. Clin Cancer Res 2016; 22: 6078-6087
  • 5 Saunders NR, Habgood MD, Mollgard K. et al. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system?. F1000Res 2016; 5
  • 6 Louveau A, Smirnov I, Keyes TJ. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 523: 337-341
  • 7 Schlager C, Korner H, Krueger M. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 2016; 530: 349-353
  • 8 Heufler C, Koch F, Schuler G. Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med 1988; 167: 700-705
  • 9 Warger T, Schild H, Rechtsteiner G. Initiation of adaptive immune responses by transcutaneous immunization. Immunol Lett 2007; 109: 13-20
  • 10 Salem ML, El-Naggar SA, Kadima A. et al. The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine 2006; 24: 5119-5132
  • 11 Temizoz B, Kuroda E, Ohata K. et al. TLR9 and STING agonists synergistically induce innate and adaptive type-II IFN. Eur J Immunol 2015; 45: 1159-1169
  • 12 Ali OA, Emerich D, Dranoff G. et al. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci Transl Med 2009; 1 8ra10.
  • 13 Reardon DA, Wucherpfennig KW, Freeman G. et al. An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines 2013; 12: 597-615
  • 14 Chiang CL, Coukos G, Kandalaft LE. Whole Tumor Antigen Vaccines: Where Are We?. Vaccines (Basel) 2015; 3: 344-372
  • 15 Sampson JH, Aldape KD, Archer GE. et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 2011; 13: 324-333
  • 16 Sampson JH, Heimberger AB, Archer GE. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010; 28: 4722-4729
  • 17 Schuster J, Lai RK, Recht LD. et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol 2015; 17: 854-861
  • 18 van den Bent MJ, Gao Y, Kerkhof M. et al. Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. Neuro Oncol 2015; 17: 935-941
  • 19 Weller M, Butowski N, Tran D. et al. ACT IV: an international, double-blind, phase 3 trial of rindopepimut in newly diagnosed, EGFRvIII-expressing glioblastoma. Neuro Oncol 2016; 18 (Suppl. 06)
  • 20 Reardon DA, Schuster J, Tran DD. et al. ReACT: Overall survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. J Clin Oncol 2015; 33: abstr 2009
  • 21 Johnson BF, Clay TM, Hobeika AC. et al. Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin Biol Ther 2007; 7: 449-460
  • 22 Voron T, Colussi O, Marcheteau E. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015; 212: 139-148
  • 23 Yan H, Parsons DW, Jin G. et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 765-773
  • 24 Ward PS, Patel J, Wise DR. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010; 17: 225-234
  • 25 Schumacher T, Bunse L, Pusch S. et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014; 512: 324-327
  • 26 Accolla RS, Tosi G. Optimal MHC-II-restricted tumor antigen presentation to CD4+ T helper cells: the key issue for development of anti-tumor vaccines. J Transl Med 2012; 10: 154
  • 27 Newcomb EW, Demaria S, Lukyanov Y. et al. The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res 2006; 12: 4730-4737
  • 28 Ochiai H, Archer GE, Herndon 2nd JE. et al. EGFRvIII-targeted immunotoxin induces antitumor immunity that is inhibited in the absence of CD4+ and CD8+ T cells. Cancer Immunol Immunother 2008; 57: 115-121
  • 29 Okada H, Kalinski P, Ueda R. et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 2011; 29: 330-336
  • 30 Pollack IF, Jakacki RI, Butterfield LH. et al. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol 2014; 32: 2050-2058
  • 31 Rampling R, Peoples S, Mulholland PJ. et al. A Cancer Research UK First Time in Human Phase I Trial of IMA950 (Novel Multipeptide Therapeutic Vaccine) in Patients with Newly Diagnosed Glioblastoma. Clin Cancer Res 2016; 22: 4776-4785
  • 32 Phuphanich S, Wheeler CJ, Rudnick JD. et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 2013; 62: 125-135
  • 33 Wen PY, Reardon DA, Phuphanich S. et al. A randomized, double-blind, placebo-controlled phase 2 trial of dendritic cell (DC) vaccination with ICT-107 in newly diagnosed glioblastoma (GBM) patients. J Clin Oncol 2014; 32: abstr 2005
  • 34 Hodi FS, OʼDay SJ, McDermott DF. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711-723
  • 35 Robert C, Long GV, Brady B. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372: 320-330
  • 36 Robert C, Ribas A, Wolchok JD. et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 2014; 384: 1109-1117
  • 37 Buchbinder E, Hodi FS. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J Clin Invest 2015; 125: 3377-3383
  • 38 Preusser M, Lim M, Hafler DA. et al. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 2015; 11: 504-514
  • 39 Belcaid Z, Phallen JA, Zeng J. et al. Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PloS one 2014; 9: e101764
  • 40 Reardon DA, Gokhale PC, Klein SR. et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res 2016; 4: 124-135
  • 41 Goldberg SB, Gettinger SN, Mahajan A. et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 2016; 17: 976-983
  • 42 Margolin K, Ernstoff MS, Hamid O. et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol 2012; 13: 459-465
  • 43 Di Giacomo AM, Ascierto PA, Pilla L. et al. Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial. Lancet Oncol 2012; 13: 879-886
  • 44 Berghoff AS, Kiesel B, Widhalm G. et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 2015; 17: 1064-1075
  • 45 Nduom EK, Wei J, Yaghi NK. et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 2016; 18: 195-205
  • 46 Wintterle S, Schreiner B, Mitsdoerffer M. et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 2003; 63: 7462-7467
  • 47 Wainwright DA, Chang AL, Dey M. et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 2014; 20: 5290-5301
  • 48 Blumenthal DT, Yalon M, Vainer GW. et al. Pembrolizumab: first experience with recurrent primary central nervous system (CNS) tumors. J Neurooncol 2016; 129: 453-460
  • 49 Roth P, Valavanis A, Weller M. Long-term control and partial remission after initial pseudoprogression of glioblastoma by anti-PD-1 treatment with nivolumab. Neuro Oncol 2016; [Epub ahead of print]
  • 50 Sampson JH, Vlahovic G, Sahebjam S. et al. Preliminary safety and activity of nivolumab and its combination with ipilimumab in recurrent glioblastoma (GBM): CHECKMATE-143. J Clin Oncol 2015; 33: abstr 3010
  • 51 Weiss T, Weller M, Roth P. Immunotherapy for glioblastoma: concepts and challenges. Curr Opin Neurol 2015; 28: 639-646
  • 52 Roth P, Junker M, Tritschler I. et al. GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin Cancer Res 2010; 16: 3851-3859
  • 53 Codo P, Weller M, Meister G. et al. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape. Oncotarget 2014; 5: 7651-7662
  • 54 Roth P, Mittelbronn M, Wick W. et al. Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Res 2007; 67: 3540-3544
  • 55 Hishii M, Nitta T, Ishida H. et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 1995; 37: 1160-1166 ; discussion 1166–1167
  • 56 Lauro GM, Di Lorenzo N, Grossi M. et al. Prostaglandin E2 as an immunomodulating factor released in vitro by human glioma cells. Acta Neuropathol 1986; 69: 278-282
  • 57 Grauer OM, Nierkens S, Bennink E. et al. CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 2007; 121: 95-105
  • 58 Brandes AA, Carpentier AF, Kesari S. et al. A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol 2016; 18: 1146-1156
  • 59 Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 2012; 72: 5435-5440
  • 60 Zhai L, Lauing KL, Chang AL. et al. The role of IDO in brain tumor immunotherapy. J Neurooncol 2015; 123: 395-403
  • 61 Dai H, Wang Y, Lu X, Han W. Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst 2016; 108 pii: djv439.
  • 62 Johnson LA, Scholler J, Ohkuri T. et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 2015;
  • 63 Gan HK, Fichtel L, Lassman AB. et al. A phase 1 study evaluating ABT-414 in combination with temozolomide (TMZ) for subjects with recurrent or unresectable glioblastoma (GBM). J Clin Oncol 2014; 32 (Suppl. 05) abstr 2021