Exp Clin Endocrinol Diabetes 2019; 127(08): 497-504
DOI: 10.1055/s-0043-106443
Review
© Georg Thieme Verlag KG Stuttgart · New York

Methylglyoxal and Advanced Glycation End Products in Patients with Diabetes – What We Know so Far and the Missing Links

Jan Benedikt Groener
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
,
Dimitrios Oikonomou
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
,
Ruan Cheko
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
,
Zoltan Kender
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
,
Johanna Zemva
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
,
Lars Kihm
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
,
Martina Muckenthaler
2   Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and University of Heidelberg, Heidelberg, Germany
,
Verena Peters
3   University Children’s Hospital, University of Heidelberg, Heidelberg, Germany
,
Thomas Fleming
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
,
Stefan Kopf
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
,
Peter P. Nawroth
1   Department Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

received 06 March 2017
revised 06 March 2017

accepted 17 March 2017

Publication Date:
13 April 2017 (online)

Abstract

Hyperglycemia explains the development of late diabetic complications in patients with diabetes type 1 and type 2 only partially. Most therapeutic efforts relying on intensive glucose control failed to decrease the absolute risk for complications by more than 10%, especially in patients with diabetes type 2. Therefore, alternative pathophysiological pathways have to be examined, in order to develop more individualized treatment options for patients with diabetes in the future. One such pathway might be the metabolism of dicarbonyls, among them methylglyoxal and the accumulation of advanced glycation end products. Here we review currently available epidemiological data on dicarbonyls and AGEs in association with human diabetes type 1 and type 2.

 
  • References

  • 1 Kihm L. Hypertension and diabetic nephropathy. Experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology [and] German Diabetes Association 2016; 124: 333-334 doi:10.1055/s-0042-110231
  • 2 Pinilla I, Sanchez-Cano A, Ferreras A. et al. Retinal sensitivity in patients with type I diabetes without retinopathy or with minor retinal changes. Experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology [and] German Diabetes Association 2016; 124: 613-617 doi:10.1055/s-0042-111045
  • 3 Jin YP, Su XF, Li HQ. et al. The therapeutic effect of pancreatic kininogenase on treatment of diabetic peripheral neuropathy in patients with type 2 diabetes. experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology [and] German Diabetes Association 2016; 124: 618-621 doi:10.1055/s-0042-107242
  • 4 Wilbek TE, Jansen RB, Jorgensen B. et al. The diabetic foot in a multidisciplinary team setting. Number of amputations below ankle level and mortality. Experimental and clinical endocrinology & diabetes: Official journal. German Society of Endocrinology [and] German Diabetes Association 2016; 124: 535-540 doi:10.1055/s-0042-109260
  • 5 Nicolau J, Simo R, Sanchis P. et al. Prevalence and clinical correlators of undiagnosed significant depressive symptoms among individuals with type 2 diabetes in a mediterranean population. Experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology [and] German Diabetes Association 2016; 124: 630-636 doi:10.1055/s-0042-109606
  • 6 Clarke PM, Gray AM, Briggs A. et al. A model to estimate the lifetime health outcomes of patients with type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68). Diabetologia 2004; 47: 1747-1759 doi:10.1007/s00125-004-1527-z
  • 7 Wojciechowska J, Krajewski W, Bolanowski M. et al. Diabetes and cancer: A review of current knowledge. Experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology [and] German Diabetes Association 2016; 124: 263-275 doi:10.1055/s-0042-100910
  • 8 SK AZ, GJ B. et al. Pulmonale Fibrose: Eine diabetische Spätkomplikation. Diabetologie und Stoffwechsel 2016; 11: S01
  • 9 Kloos C, Muller N, Hartmann P. et al. High quality of diabetes care based upon individualised treatment goals – a cross sectional study in 4784 patients in Germany. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association 2016; 124: 294-299 doi:10.1055/s-0035-1569380
  • 10 Stanton RC. Diabetic kidney disease and hypertension. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association 2016; 124: 93-98 doi:10.1055/s-0035-1559760
  • 11 Garg A, Grundy SM. Lovastatin for lowering cholesterol levels in non-insulin-dependent diabetes mellitus. The New England Journal of Medicine 1988; 318: 81-86 doi:10.1056/nejm198801143180204
  • 12 Rohling M, Herder C, Roden M. et al. Effects of long-term exercise interventions on glycaemic control in type 1 and type 2 diabetes: a systematic review. Experimental and clinical endocrinology & diabetes: official journal. German Society of Endocrinology [and] German Diabetes Association 2016; 124: 487-494 doi:10.1055/s-0042-106293
  • 13 Wing RR, Bolin P, Brancati FL. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. The New England Journal of Medicine 2013; 369: 145-154 doi:10.1056/NEJMoa1212914
  • 14 Lind M, Oden A, Fahlen M. et al. The shape of the metabolic memory of HbA1c: Re-analysing the DCCT with respect to time-dependent effects. Diabetologia 2010; 53: 1093-1098 doi:10.1007/s00125-010-1706-z
  • 15 Nawroth PP, Rudofsky G, Humpert P. Have we understood diabetes? New tasks for diagnosis and therapy. Experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology [and] German Diabetes Association 2010; 118: 1-3 doi:10.1055/s-0029-1246117
  • 16 Li G, Zhang P, Wang J. et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing diabetes prevention study: a 23-year follow-up study. The Lancet Diabetes & Endocrinology 2014; 2: 474-480 doi:10.1016/s2213-8587(14)70057-9
  • 17 Haslbeck KM, Schleicher E, Bierhaus A. et al. The AGE/RAGE/NF-(kappa)B pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (IGT). Experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology [and] German Diabetes Association 2005; 113: 288-291 doi:10.1055/s-2005-865600
  • 18 Simmons RK, Echouffo-Tcheugui JB, Sharp SJ. et al. Screening for type 2 diabetes and population mortality over 10 years (ADDITION-Cambridge): A cluster-randomised controlled trial. Lancet (London, England) 2012; 380: 1741-1748 doi:10.1016/s0140-6736(12)61422-6
  • 19 Li G, Zhang P, Wang J. et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: a 20-year follow-up study. Lancet (London, England) 2008; 371: 1783-1789 doi:10.1016/s0140-6736(08)60766-7
  • 20 Peters V, Lanthaler B, Amberger A. et al. Carnosine metabolism in diabetes is altered by reactive metabolites. Amino acids 2015; 47: 2367-2376 doi:10.1007/s00726-015-2024-z
  • 21 Yadav AK, Sinha N, Kumar V. et al. Association of CTG repeat polymorphism in carnosine dipeptidase 1 (CNDP1) gene with diabetic nephropathy in north Indians. The Indian journal of medical research 2016; 144: 32-37 doi:10.4103/0971-5916.193280
  • 22 Wong J, Constantino M, Yue DK. Morbidity and mortality in young-onset type 2 diabetes in comparison to type 1 diabetes: Where are we now?. Current diabetes reports 2015; 15: 566 doi:0.1007/s11892-014-0566-1
  • 23 Thornalley PJ. Dicarbonyl intermediates in the maillard reaction. Annals of the New York Academy of Sciences 2005; 1043: 111-117 doi:10.1196/annals.1333.014
  • 24 Phillips SA, Thornalley PJ. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. European Journal of Biochemistry 1993; 212: 101-105
  • 25 Thornalley PJ. Modification of the glyoxalase system in human red blood cells by glucose in vitro. The Biochemical Journal 1988; 254: 751-755
  • 26 Cantero AV, Portero-Otin M, Ayala V. et al. Methylglyoxal induces advanced glycation end product (AGEs) formation and dysfunction of PDGF receptor-beta: implications for diabetic atherosclerosis. FASEB journal: Official publication of the Federation of American Societies for Experimental Biology 2007; 21: 3096-3106 doi:10.1096/fj.06-7536com
  • 27 Groener JB, Reismann P, Fleming T. et al. C332C genotype of glyoxalase 1 and its association with late diabetic complications. Experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology [and] German Diabetes Association 2013; 121: 436-439 doi:10.1055/s-0033-1345124
  • 28 Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813-820 doi:10.1038/414813a
  • 29 Karachalias N, Babaei-Jadidi R, Ahmed N. et al. Accumulation of fructosyl-lysine and advanced glycation end products in the kidney, retina and peripheral nerve of streptozotocin-induced diabetic rats. Biochemical Society Transactions 2003; 31: 1423-1425 doi:10.1042/
  • 30 Thornalley PJ. Glyoxalase I – structure, function and a critical role in the enzymatic defence against glycation. Biochemical Society Transactions 2003; 31: 1343-1348 doi:10.1042/
  • 31 Morgenstern J, Fleming T, Schumacher D. et al. Loss of glyoxalase 1 induces compensatory mechanism to achieve dicarbonyl detoxification in mammalian Schwann cells. The Journal of Biological Chemistry 2016;
  • 32 Pfaff DH, Fleming T, Nawroth P. et al. Evidence against a role for the Parkinsonism-associated protein DJ-1 in methylglyoxal detoxification. The Journal of Biological Chemistry 2016;
  • 33 Jakus V, Rietbrock N. Advanced glycation end-products and the progress of diabetic vascular complications. Physiological Research 2004; 53: 131-142
  • 34 Han Y, Randell E, Vasdev S. et al. Plasma advanced glycation endproduct, methylglyoxal-derived hydroimidazolone is elevated in young, complication-free patients with type 1 diabetes. Clinical Biochemistry 2009; 42: 562-569 doi:10.1016/j.clinbiochem.2008.12.016
  • 35 Kilhovd BK, Giardino I, Torjesen PA. et al. Increased serum levels of the specific AGE-compound methylglyoxal-derived hydroimidazolone in patients with type 2 diabetes. Metabolism: Clinical and Experimental 2003; 52: 163-167 doi:10.1053/meta.2003.50035
  • 36 McLellan AC, Thornalley PJ, Benn J. et al. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clinical Science (London, England: 1979) 1994; 87: 21-29
  • 37 Han Y, Randell E, Vasdev S. et al. Plasma methylglyoxal and glyoxal are elevated and related to early membrane alteration in young, complication-free patients with Type 1 diabetes. Molecular and Cellular Biochemistry 2007; 305: 123-131 doi:10.1007/s11010-007-9535-1
  • 38 Ahmed N, Babaei-Jadidi R, Howell SK. et al. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia 2005; 48: 1590-1603 doi:10.1007/s00125-005-1810-7
  • 39 Sveen KA, Karime B, Jorum E. et al. Small- and large-fiber neuropathy after 40 years of type 1 diabetes: Associations with glycemic control and advanced protein glycation: The Oslo study. Diabetes Care 2013; 36: 3712-3717 doi:10.2337/dc13-0788
  • 40 Hansen CS, Jensen TM, Jensen JS. et al. The role of serum methylglyoxal on diabetic peripheral and cardiovascular autonomic neuropathy: the ADDITION Denmark study. Diabetic medicine: A Journal of the British Diabetic Association 2015; 32: 778-785 doi:10.1111/dme.12753
  • 41 Jensen TM, Vistisen D, Fleming T. et al. Impact of intensive treatment on serum methylglyoxal levels among individuals with screen-detected type 2 diabetes: The ADDITION-Denmark study. Acta Diabetologica 2015; 52: 929-936 doi:10.1007/s00592-015-0739-7
  • 42 Waris S, Winklhofer-Roob BM, Roob JM. et al. Increased DNA dicarbonyl glycation and oxidation markers in patients with type 2 diabetes and link to diabetic nephropathy. Journal of Diabetes Research 2015; 2015: 915486 doi:10.1155/2015/915486
  • 43 Mostafa AA, Randell EW, Vasdev SC. et al. Plasma protein advanced glycation end products, carboxymethyl cysteine, and carboxyethyl cysteine, are elevated and related to nephropathy in patients with diabetes. Molecular and Cellular Biochemistry 2007; 302: 35-42 doi:10.1007/s11010-007-9422-9
  • 44 Coughlan MT, Patel SK, Jerums G. et al. Advanced glycation urinary protein-bound biomarkers and severity of diabetic nephropathy in man. American Journal of Nephrology 2011; 34: 347-355 doi:10.1159/000331064
  • 45 Beisswenger PJ, Howell SK, Russell GB. et al. Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products. Diabetes care 2013; 36: 3234-3239 doi:10.2337/dc12-2689
  • 46 Beisswenger PJ, Howell SK, Russell G. et al. Detection of diabetic nephropathy from advanced glycation endproducts (AGEs) differs in plasma and urine, and is dependent on the method of preparation. Amino Acids 2014; 46: 311-319 doi:10.1007/s00726-013-1533-x
  • 47 Jensen TM, Vistisen D, Fleming T. et al. Methylglyoxal is associated with changes in kidney function among individuals with screen-detected Type 2 diabetes mellitus. Diabetic medicine: A journal of the British Diabetic Association 2016; 33: 1625-1631 doi:10.1111/dme.13201
  • 48 Fosmark DS, Torjesen PA, Kilhovd BK. et al. Increased serum levels of the specific advanced glycation end product methylglyoxal-derived hydroimidazolone are associated with retinopathy in patients with type 2 diabetes mellitus. Metabolism: Clinical and Experimental 2006; 55: 232-236 doi:10.1016/j.metabol.2005.08.017
  • 49 Koga K, Yamagishi S, Okamoto T. et al. Serum levels of glucose-derived advanced glycation end products are associated with the severity of diabetic retinopathy in type 2 diabetic patients without renal dysfunction. International Journal of Clinical Pharmacology Research 2002; 22: 13-17
  • 50 Fosmark DS, Berg JP, Jensen AB. et al. Increased retinopathy occurrence in type 1 diabetes patients with increased serum levels of the advanced glycation endproduct hydroimidazolone. Acta Ophthalmologica 2009; 87: 498-500 doi:10.1111/j.1755-3768.2008.01300.x
  • 51 Hammes HP, Brownlee M, Lin J. et al. Diabetic retinopathy risk correlates with intracellular concentrations of the glycoxidation product Nepsilon-(carboxymethyl) lysine independently of glycohaemoglobin concentrations. Diabetologia 1999; 42: 603-607
  • 52 Rabbani N, Godfrey L, Xue M. et al. Glycation of LDL by methylglyoxal increases arterial atherogenicity: A possible contributor to increased risk of cardiovascular disease in diabetes. Diabetes 2011; 60: 1973-1980 doi:10.2337/db11-0085
  • 53 Engelbertsen D, Anand DV, Fredrikson GN. et al. High levels of IgM against methylglyoxal-modified apolipoprotein B100 are associated with less coronary artery calcification in patients with type 2 diabetes. Journal of Internal Medicine 2012; 271: 82-89 doi:10.1111/j.1365-2796.2011.02411.x
  • 54 Hanssen NM, Engelen L, Ferreira I. et al. Plasma levels of advanced glycation endproducts Nepsilon-(carboxymethyl)lysine, Nepsilon-(carboxyethyl)lysine, and pentosidine are not independently associated with cardiovascular disease in individuals with or without type 2 diabetes: The Hoorn and CODAM studies. The Journal of Clinical Endocrinology and Metabolism 2013; 98: E1369-E1373 doi:10.1210/jc.2013-1068
  • 55 Linssen PB, Henry RM, Schalkwijk CG. et al. Serum advanced glycation endproducts are associated with left ventricular dysfunction in normal glucose metabolism but not in type 2 diabetes: The Hoorn Study. Diabetes & Vascular Disease Research 2016; 13: 278-285 doi:10.1177/1479164116640680
  • 56 Sveen KA, Nerdrum T, Hanssen KF. et al. Impaired left ventricular function and myocardial blood flow reserve in patients with long-term type 1 diabetes and no significant coronary artery disease: Associations with protein glycation. Diabetes & Vascular Disease Research 2014; 11: 84-91 doi:10.1177/1479164113518805
  • 57 Monnier VM, Sun W, Gao X. et al. Skin collagen advanced glycation endproducts (AGEs) and the long-term progression of sub-clinical cardiovascular disease in type 1 diabetes. Cardiovascular Diabetology 2015; 14: 118 doi:10.1186/s12933-015-0266-4
  • 58 Schram MT, Schalkwijk CG, Bootsma AH. et al. Advanced glycation end products are associated with pulse pressure in type 1 diabetes: The EURODIAB Prospective Complications Study. Hypertension (Dallas, Tex: 1979) 2005; 46: 232-237 doi:10.1161/01.HYP.0000164574.60279.ba
  • 59 Heier M, Margeirsdottir HD, Torjesen PA. et al. The advanced glycation end product methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in childhood diabetes. Diabetes & Vascular Disease Research 2015; 12: 139-145 doi:10.1177/1479164114560910
  • 60 van Eupen MG, Schram MT, van Sloten TT. et al. Skin autofluorescence and pentosidine are associated with aortic stiffening: The maastricht study. Hypertension (Dallas, Tex: 1979) 2016; 68: 956-963 doi:10.1161/hypertensionaha.116.07446
  • 61 Spauwen PJ, van Eupen MG, Kohler S. et al. Associations of advanced glycation end-products with cognitive functions in individuals with and without type 2 diabetes: the maastricht study. The Journal of Clinical Endocrinology and Metabolism 2015; 100: 951-960 doi:10.1210/jc.2014-2754
  • 62 Fleming T, Cuny J, Nawroth G. et al. Is diabetes an acquired disorder of reactive glucose metabolites and their intermediates?. Diabetologia 2012; 55: 1151-1155 doi:10.1007/s00125-012-2452-1
  • 63 Monnier VM, Bautista O, Kenny D. et al. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT skin collagen ancillary study group. Diabetes Control and Complications Trial. Diabetes 1999; 48: 870-880
  • 64 Monnier VM, Sell DR, Strauch C. et al. The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes. Journal of Diabetes and its Complications 2013; 27: 141-149 doi:10.1016/j.jdiacomp.2012.10.004
  • 65 Genuth S, Sun W, Cleary P. et al. Skin advanced glycation end products glucosepane and methylglyoxal hydroimidazolone are independently associated with long-term microvascular complication progression of type 1 diabetes. Diabetes 2015; 64: 266-278 doi:10.2337/db14-0215
  • 66 Gerrits EG, Smit AJ, Bilo HJ. AGEs, autofluorescence and renal function. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 2009; 24: 710-713 doi:10.1093/ndt/gfn634
  • 67 Lutgers HL, Graaff R, Links TP. et al. Skin autofluorescence as a noninvasive marker of vascular damage in patients with type 2 diabetes. Diabetes Care 2006; 29: 2654-2659 doi:10.2337/dc05-2173
  • 68 Lutgers HL, Gerrits EG, Graaff R. et al. Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus. Diabetologia 2009; 52: 789-797 doi:10.1007/s00125-009-1308-9
  • 69 Kellow NJ, Coughlan MT, Savige GS. et al. Effect of dietary prebiotic supplementation on advanced glycation, insulin resistance and inflammatory biomarkers in adults with pre-diabetes: a study protocol for a double-blind placebo-controlled randomised crossover clinical trial. BMC Endocrine Disorders 2014; 14: 55 doi:10.1186/1472-6823-14-55