RSS-Feed abonnieren
DOI: 10.1055/s-0043-121124
Diagnostik der Sepsis
Publikationsverlauf
Publikationsdatum:
07. März 2018 (online)
Die Diagnose einer Sepsis sicher und schnell zu stellen, führt zur schnelleren Initiierung einer Therapie – und damit zu einer niedrigeren Letalität. Die Schwierigkeit liegt darin, einfache Infektionen von einer Sepsis zu unterscheiden. Die Identifizierung neuer Biomarker kann diese Hürde nicht allein überwinden. Die Kombination neuer Erkenntnisse in Pathophysiologie und Labordiagnostik können Fortschritte in der frühen Sepsisdiagnose erzielen.
-
Die Diagnose der Sepsis ist und bleibt diffizil.
-
Kein singulärer Biomarker hat einen positiven prädiktiven Wert, der sicher die an Sepsis erkrankten Patienten von den nicht erkrankten unterscheidet.
-
Ein Biomarker oder die Kombination aus mehreren Biomarkern unterstützt die Identifikation der Sepsispatienten und damit die Initiierung einer adäquaten Therapie.
-
Die klinische Beurteilung, durch Schulungsmaßnahmen geschärft, ist unerlässlich.
-
Zukünftig können molekularbiologische Methoden die Sepsisdiagnose schneller und sicherer machen.
-
Literatur
- 1 Kaukonen KM, Bailey M, Pilcher D. et al. Systemic inflammatory response syndrome criteria in defining severe sepsis. N Engl J Med 2015; 372: 1629-1638
- 2 Singer M, Deutschman CS, Seymour CW. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801-810
- 3 Marx G, Weigand M. Zweifel an der Überlegenheit der neuen Definition. Dtsch Ärztebl 2017; 114: A-1429
- 4 Martin L, Marx G, Schürholz T. Neue Möglichkeiten in der Diagnostik der Sepsis. In: Sybrecht GW. et al., Hrsg. DIVI Jahrbuch 2014/2015: Fortbildung und Wissenschaft in der interdisziplinären Intensivmedizin und Notfallmedizin. Stuttgart: Mwv Medizinisch Wissenschaftliche Verlagsgesellschaft; 2015: 5-10
- 5 Su L, Han B, Liu C. et al. Value of soluble TREM-1, procalcitonin, and C-reactive protein serum levels as biomarkers for detecting bacteremia among sepsis patients with new fever in intensive care units: a prospective cohort study. BMC Infect Dis 2012; 12: 157
- 6 Bloos F, Marshall JC, Dellinger RP. et al. Multinational, observational study of procalcitonin in Icu patients with pneumonia requiring mechanical ventilation: a multicenter observational study. Crit Care 2011; 15: R88
- 7 Wacker C, Prkno A, Brunkhorst FM. et al. Shlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis 2013; 13: 426-435
- 8 Schuetz P, Maurer P, Punjabi V. et al. Procalcitonin decrease over 72 hours in US critical care units predicts fatal outcome in sepsis patients. Crit Care 2013; 17: R115
- 9 Karlsson S, Heikkinen M, Pettila V. et al. Predictive value of procalcitonin decrease in patients with severe sepsis: a prospective observational study. Crit Care 2010; 14: R205
- 10 Bouadma L, Luyt CE, Tubach F. et al. Use of procalcitonin to reduce patientsʼ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010; 375: 463-474
- 11 Bloos F, Trips E, Nierhaus A. et al. Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: a randomized clinical trial. JAMA Intern Med 2016; 176: 1266-1276
- 12 Schuetz P, Wirz Y, Sager R. et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev 2017; (10) CD007498
- 13 Schuetz P, Wirz Y, Sager R. et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis 2018; 18: 95-107
- 14 Almeida AB, Faria G, Moreira H. et al. Elevated serum C-reactive protein as a predictive factor for anastomotic leakage in colorectal surgery. Int J Surg 2012; 10: 87-91
- 15 Simon L, Gauvin F, Amre DK. et al. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 2004; 39: 206-217
- 16 Barre M, Behnes M, Hamed S. et al. Revisiting the prognostic value of monocyte chemotactic protein 1 and interleukin-6 in the sepsis-3 era. J Crit Care 2017; 43: 21-28
- 17 Qiao Z, Wang W, Yin L. et al. Using IL-6 concentrations in the first 24 h following trauma to predict immunological complications and mortality in trauma patients: a meta-analysis. Eur J Trauma Emerg Surg 14.11.2017; DOI: 10.1007/s00068-017-0880-9.
- 18 Lorente L, Martín MM, Pérez-Cejas A. et al. Association between Interleukin-6 Promoter Polymorphism (−174 G/C), serum interleukin-6 levels and mortality in severe septic patients. Int J Mol Sci 2016; 17: E1861
- 19 Simon TP, Martin L, Doemming S. et al. Plasma adrenomedullin in critically ill patients with sepsis after major surgery: A pilot study. J Crit Care 2017; 38: 68-72
- 20 Wu CC, Lan HM, Han ST. et al. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: a systematic review and meta-analysis. Ann Intens Care 2017; 7: 91
- 21 Wu Y, Wang F, Fan X. et al. Accuracy of plasma sTREM-1 for sepsis diagnosis in systemic inflammatory patients: a systematic review and meta-analysis. Crit Care 2012; 16: R229
- 22 Li Z, Wang H, Liu J. et al. Serum soluble triggering receptor expressed on myeloid cells-1 and procalcitonin can reflect sepsis severity and predict prognosis: a prospective cohort study. Mediators Inflamm 2014; 2014: 641039
- 23 Hoeger J, Simon TP, Beeker T. et al. Persistent low serum zinc is associated with recurrent sepsis in critically ill patients – A pilot study. PLoS One 2017; 12: e0176069
- 24 Tacke F, Roderburg C, Benz F. et al. Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit Care Med 2014; 42: 1096-1104
- 25 HO J, Chan H, Wong SH. et al. The involvement of regulatory non-coding RNAs in sepsis: a systematic review. Crit Care 2016; 20: 383
- 26 Martin L, Schmitz S, De Santis R. et al. Peptide 19-2.5 inhibits heparan sulfate-triggered inflammation in murine cardiomyocytes stimulated with human sepsis serum. PLoS One 2015; 10: e0127584
- 27 Nelson A, Berkestedt I, Bodelsson M. Circulating glycosaminoglycan species in septic shock. Acta Anaesthesiol Scand 2014; 58: 36-43
- 28 Richter DR, Heininger A, Brenner T. et al. Bacterielle Sepsis: Diagnostik und kalkulierte Antibiotikatherapie. Anaesthesist 2017; 66: 737-761
- 29 Ferrer R, Martin-Loeches I, Phillips G. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 2014; 42: 1749-1755
- 30 Zilberberg MD, Shorr AF, Micek ST. et al. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care 2014; 18: 596
- 31 Bauer M, Giamarellos-Bourboulis EJ, Kortgen A. et al. A transcriptomic biomarker to quantify systemic inflammation in sepsis – a prospective multicenter phase ii diagnostic study. EBioMedicine 2016; 6: 114-125
- 32 Arnold RC, Shapiro NI, Jones AE. et al. Multicenter study of early lactate clearance as a determinant of survival in patients with presumed sepsis. Shock 2009; 32: 35-39
- 33 Casserly B, Phillips GS, Schorr C. et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the surviving Sepsis Campaign Database. Crit Care Med 2015; 43: 567-573
- 34 Spoto S, Cella E, DE Cesaris M. et al. Procalcitonin and Mr-proadrenomedullin combination with sofa and qsofa scores for sepsis diagnosis and prognosis: a diagnostic algorithm. Shock 2017; DOI: 10.1097/SHK.0000000000001023.