CC BY-NC-ND 4.0 · Laryngorhinootologie 2018; 97(S 01): S142-S184
DOI: 10.1055/s-0043-123484
Referat
Eigentümer und Copyright ©Georg Thieme Verlag KG 2018

Biologicals in der Rhinologie – Individualisierte Konzepte der Zukunft

Article in several languages: deutsch | English
Adam M. Chaker
1   Klinik für Hals-Nasen-Ohrenheilkunde und Zentrum für Allergie und Umwelt, Klinikum rechts der Isar, Technische Universität München
› Author Affiliations
Further Information

Publication History

Publication Date:
22 March 2018 (online)

Zusammenfassung

Sinunasale Erkrankungen zählen mit zu den häufigsten chronischen Erkrankungen und führen zu einer erheblichen Störung der Lebensqualität, ein komorbides Asthma ist häufig. Trotz leitliniengerechter Therapie ist anzunehmen, dass mind. 20% der Patienten ihre Erkrankungssymptome nicht adäquat kontrollieren können. Neben den etablierten chirurgischen und konservativen Therapieoptionen finden sich nun vielversprechende Therapieansätze, die bspw. mittels therapeutischer Antikörper mechanistisch gezielt in die Pathophysiologie der Erkrankungen eingreifen können. Die Auswahl der geeigneten Patienten durch geeignete Biomarker und die richtige Therapie zum richtigen Stadium der Erkrankung anbieten zu können, ist das Ziel stratifizierter Medizin und eine wichtige Perspektive für die HNO.

 
  • Literatur

  • 1 Boyman O. et al. EAACI IG Biologicals task force paper on the use of biologic agents in allergic disorders. Allergy 2015; 70: 727-754
  • 2 Agency EM. EMA GUIDELINE ON SIMILAR BIOLOGICAL MEDICINAL PRODUCTS. 2005 (http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003517.pdf (10th of October, 2017))
  • 3 Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495-497
  • 4 Quianzon CC, Cheikh I. History of insulin. J Community Hosp Intern Med Perspect 2012; 2
  • 5 Suiter TM. First and next generation native rFVIII in the treatment of hemophilia A. What has been achieved? Can patients be switched safely?. Semin Thromb Hemost 2002; 28: 277-284
  • 6 Beauvais P, Billette de Villemeur T. Prion diseases and blood transfusion. Transfus Clin Biol 1999; 6: 24-28
  • 7 Frasier SD. The not-so-good old days: working with pituitary growth hormone in North America, 1956 to 1985. J Pediatr 1997; 131: S1-S4
  • 8 Ayyar VS. History of growth hormone therapy. Indian J Endocrinol Metab 2011; 15 (Suppl. 03) S162-S165
  • 9 Mosmann TR. et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136: 2348-2357
  • 10 Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145-173
  • 11 Bryan SA. et al. Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000; 356: 2149-2153
  • 12 Friedrich M. et al. Immunomodulation by interleukin-10 therapy decreases the incidence of relapse and prolongs the relapse-free interval in Psoriasis. J Invest Dermatol 2002; 118: 672-677
  • 13 Trepicchio WL. et al. Interleukin-11 therapy selectively downregulates type I cytokine proinflammatory pathways in psoriasis lesions. J Clin Invest 1999; 104: 1527-1537
  • 14 Goel N, Chance K. Biosimilars in rheumatology: understanding the rigor of their development. Rheumatology (Oxford) 2017; 56: 187-197
  • 15 Dorvignit D. et al. Expression and biological characterization of an anti-CD20 biosimilar candidate antibody: A case study. MAbs 2012; 4: 488-496
  • 16 Elliott MJ. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 1994; 344: 1105-1110
  • 17 Taylor PC. Developing anti-TNF and biologic agents. Rheumatology (Oxford) 2011; 50: 1351-1353
  • 18 Upchurch KS, Kay J. Evolution of treatment for rheumatoid arthritis. Rheumatology (Oxford) 2012; 51 (Suppl. 06) vi28-vi36
  • 19 Roque-Navarro L. et al. Humanization of predicted T-cell epitopes reduces the immunogenicity of chimeric antibodies: New evidence supporting a simple method. Hybrid Hybridomics 2003; 22: 245-257
  • 20 Croft M, Benedict CA, Ware CF. Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov 2013; 12: 147-168
  • 21 Parren P, Carter PJ, Pluckthun A. Changes to International Nonproprietary Names for antibody therapeutics 2017 and beyond: of mice, men and more. MAbs 2017; 9: 898-906
  • 22 Vultaggio A. et al. Manifestations of Antidrug Antibodies Response: Hypersensitivity and Infusion Reactions. J Interferon Cytokine Res 2014; 34: 946-952
  • 23 Vultaggio A. et al. Circulating T cells to infliximab are detectable mainly in treated patients developing anti-drug antibodies and hypersensitivity reactions. Clin Exp Immunol 2016; 186: 364-372
  • 24 Robert F. et al. Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol 2001; 19: 3234-3243
  • 25 Bourhis J. et al. Phase I/II study of cetuximab in combination with cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 2006; 24: 2866-2872
  • 26 Bonner JA. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006; 354: 567-578
  • 27 O'Neil BH. et al. High incidence of cetuximab-related infusion reactions in Tennessee and North Carolina and the association with atopic history. J Clin Oncol 2007; 25: 3644-3648
  • 28 Chung CH. et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 2008; 358: 1109-1117
  • 29 Budach W, Bolke E, Homey B. Severe cutaneous reaction during radiation therapy with concurrent cetuximab. N Engl J Med 2007; 357: 514-515
  • 30 Commins SP, Platts-Mills TA. Delayed anaphylaxis to red meat in patients with IgE specific for galactose alpha-1,3-galactose (alpha-gal). Curr Allergy Asthma Rep 2013; 13: 72-77
  • 31 Commins SP, Platts-Mills TA. Tick bites and red meat allergy. Curr Opin Allergy Clin Immunol 2013; 13: 354-359
  • 32 Galili U. The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunol Cell Biol 2005; 83: 674-686
  • 33 Fischer J. et al. Galactose-alpha-1,3-galactose sensitization is a prerequisite for pork-kidney allergy and cofactor-related mammalian meat anaphylaxis. J Allergy Clin Immunol 2014; 134: 755-759 e1
  • 34 Kleponis J, Skelton R, Zheng L. Fueling the engine and releasing the break: combinational therapy of cancer vaccines and immune checkpoint inhibitors. Cancer Biol Med 2015; 12: 201-208
  • 35 Perez-Alvarez R. et al. Biologics-induced autoimmune diseases. Curr Opin Rheumatol 2013; 25: 56-64
  • 36 Weise M. et al. Biosimilars: the science of extrapolation. Blood 2014; 124: 3191-3196
  • 37 Ledford H. First biosimilar drug set to enter US market. Nature 2015; 517: 253-254
  • 38 Kurki P. et al. Interchangeability of Biosimilars: A European Perspective. BioDrugs 2017; 31: 83-91
  • 39 Agency EM. Guideline on similar biological medicinal products. 2013 (http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/10/WC500176768.pdf) Accessed on 10th October 2017
  • 40 Glue P. et al. Pegylated interferon-alpha2b: pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Hepatitis C Intervention Therapy Group. Clin Pharmacol Ther 2000; 68: 556-567
  • 41 Mok TS. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361: 947-957
  • 42 Krueger J. et al. Tofacitinib attenuates pathologic immune pathways in patients with psoriasis: A randomized phase 2 study. J Allergy Clin Immunol 2016; 137: 1079-1090
  • 43 Aguilar-Pimentel A. et al. Improved efficacy of allergen-specific immunotherapy by JAK inhibition in a murine model of allergic asthma. PLoS One 2017; 12: e0178563
  • 44 Boyle MP, De Boeck K. A new era in the treatment of cystic fibrosis: correction of the underlying CFTR defect. Lancet Respir Med 2013; 1: 158-163
  • 45 Quon BS, Wilcox PG. A new era of personalized medicine for cystic fibrosis – at last!. Can Respir J 2015; 22: 257-260
  • 46 Krug N. et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N Engl J Med 2015; 372: 1987-1995
  • 47 IMS Institute for Healthcare Informatics, Delivering on the Potentialof Biosimilar Medicines; The Role of Functioning Competitive Markets. 2016 (http://www.medicinesforeurope.com/wp-content/uploads/2016/03/IMS-Institute-Biosimilar-Report-March-2016-FINAL.pdf am 04.01.2018)
  • 48 GKV Spitzenverband Deutschland. Biosimilars aus Sicht der Kostenträger. 2016 https://www.bfarm.de/SharedDocs/Downloads/DE/Service/Termine-und-Veranstaltungen/dialogveranstaltungen/dialog_2016/160627/08_Folien_Haas.pdf?__blob=publicationFile&v=2 zuletzt am 04.01.2018)
  • 49 Health, I. Impact of Biosimilar Competion 2016. 2016 (https://www.imshealth.com/files/web/Market Insights/IMS_Health_Impact_of_Biosimilar_Competition_EU_2016.pdf online am 10.10.2017)
  • 50 Chaker AM, Wagenmann M. Schleimhaut der Nase. Allergo J 2014; 23: 14
  • 51 Pabst R, Chaker A. Integriertes Schleimhautimmunsystem der oberen Atemwege: Intraepitheliale Lymphozyten, NALT und der Waldeyersche Rachenring. Biedermann, Heppt, Renz, Röcken: Allergologie 2016; 1: 147-155
  • 52 Bachert C, Holtappels G. Pathophysiology of chronic rhinosinusitis, pharmaceutical therapy options. Laryngorhinootologie 2015; 94 (Suppl. 01) S32-S63
  • 53 Afzelius BA. Cilia-related diseases. J Pathol 2004; 204: 470-477
  • 54 Stanke F. The Contribution of the Airway Epithelial Cell to Host Defense. Mediators Inflamm 2015; 2015: 463016
  • 55 Sisson JH. et al. Smoke and viral infection cause cilia loss detectable by bronchoalveolar lavage cytology and dynein ELISA. Am J Respir Crit Care Med 1994; 149: 205-213
  • 56 Ganz T, Lehrer RI. Defensins. Pharmacol Ther 1995; 66: 191-205
  • 57 Radicioni G. et al. The innate immune properties of airway mucosal surfaces are regulated by dynamic interactions between mucins and interacting proteins: the mucin interactome. Mucosal Immunol 2016; 9: 1442-1454
  • 58 Cobo ER. et al. Colonic MUC2 mucin regulates the expression and antimicrobial activity of beta-defensin 2. Mucosal Immunol 2015; 8: 1360-1372
  • 59 Delacroix DL. et al. IgA subclasses in various secretions and in serum. Immunology 1982; 47: 383-385
  • 60 Brandtzaeg P. Pillars Article: Mucosal and Glandular Distribution of Immunoglobulin Components: Differential Localization of Free and Bound SC in Secretory Epithelial Cells. J Immunol 1974; 112: 1553-1559 J Immunol 2017; 198: 1768–1774
  • 61 Macpherson AJ. et al. The immune geography of IgA induction and function. Mucosal Immunol 2008; 1: 11-22
  • 62 Pawankar RU. et al. Phenotypic and molecular characteristics of nasal mucosal gamma delta T cells in allergic and infectious rhinitis. Am J Respir Crit Care Med 1996; 153: 1655-1665
  • 63 Mjosberg JM. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 2011; 12: 1055-1062
  • 64 Brandtzaeg P, Pabst R. Let's go mucosal: communication on slippery ground. Trends Immunol 2004; 25: 570-577
  • 65 Chaker AM. Anatomy and Microanatomy of Tonsils. Encyclopedia of Immunobiology 2016; 3: 420-426
  • 66 Gevaert P. et al. Organization of secondary lymphoid tissue and local IgE formation to Staphylococcus aureus enterotoxins in nasal polyp tissue. Allergy 2005; 60: 71-79
  • 67 Fokkens WJ. et al. Langerhans cells in nasal mucosa of patients with grass pollen allergy. Immunobiology 1991; 182: 135-142
  • 68 Fokkens WJ. et al. Characterization and quantification of cellular infiltrates in nasal mucosa of patients with grass pollen allergy, non-allergic patients with nasal polyps and controls. Int Arch Allergy Appl Immunol 1990; 93: 66-72
  • 69 Jahnsen FL. et al. Human nasal mucosa contains antigen-presenting cells of strikingly different functional phenotypes. Am J Respir Cell Mol Biol 2004; 30: 31-37
  • 70 Allam JP. et al. Comparative analysis of nasal and oral mucosa dendritic cells. Allergy 2006; 61: 166-172
  • 71 Soyka MB. et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol 2012; 130: 1087-1096 e10
  • 72 Zhou B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 2005; 6: 1047-1053
  • 73 Xu G. et al. Opposing roles of IL-17 A and IL-25 in the regulation of TSLP production in human nasal epithelial cells. Allergy 2010; 65: 581-589
  • 74 Zissler UM. et al. Interleukin-4 and interferon-gamma orchestrate an epithelial polarization in the airways. Mucosal Immunol 2016; 9: 917-926
  • 75 Soyka MB. et al. The Induction of IL-33 in the Sinus Epithelium and Its Influence on T-Helper Cell Responses. PLoS One 2015; 10: e0123163
  • 76 Bachert C. et al. IL-5 synthesis is upregulated in human nasal polyp tissue. J Allergy Clin Immunol 1997; 99: 837-842
  • 77 Van Zele T. et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 2006; 61: 1280-1289
  • 78 Bachert C. et al. Total and specific IgE in nasal polyps is related to local eosinophilic inflammation. J Allergy Clin Immunol 2001; 107: 607-614
  • 79 Linneberg A. et al. The link between allergic rhinitis and allergic asthma: a prospective population-based study. The Copenhagen Allergy Study. Allergy 2002; 57: 1048-1052
  • 80 Anderson HR, Bland JM, Peckham CS. Risk factors for asthma up to 16 years of age. Evidence from a national cohort study. Chest 1987; 91 6 Suppl 127S-130S
  • 81 Shaaban R. et al. Rhinitis and onset of asthma: A longitudinal population-based study. Lancet 2008; 372: 1049-1057
  • 82 Jarvis D. et al. Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe. Allergy 2012; 67: 91-98
  • 83 Settipane GA, Chafee FH. Nasal polyps in asthma and rhinitis. A review of 6,037 patients. J Allergy Clin Immunol 1977; 59: 17-21
  • 84 Bachert C, Zhang L, Gevaert P. Current and future treatment options for adult chronic rhinosinusitis: Focus on nasal polyposis. J Allergy Clin Immunol 2015; 136: 1431-1440
  • 85 Williamson PA. et al. Airway dysfunction in nasal polyposis: A spectrum of asthmatic disease?. Clin Exp Allergy 2011; 41: 1379-1385
  • 86 Hens G. et al. Sinonasal pathology in nonallergic asthma and COPD: ‘united airway diseaseʼ beyond the scope of allergy. Allergy 2008; 63: 261-267
  • 87 Spergel JM, Paller AS. Atopic dermatitis and the atopic march. J Allergy Clin Immunol 2003; 112 6 Suppl S118-S127
  • 88 Braunstahl GJ. et al. Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients. Am J Respir Crit Care Med 2000; 161: 2051-2057
  • 89 Braunstahl GJ. et al. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol 2001; 107: 469-476
  • 90 Braunstahl GJ. et al. Segmental bronchoprovocation in allergic rhinitis patients affects mast cell and basophil numbers in nasal and bronchial mucosa. Am J Respir Crit Care Med 2001; 164: 858-865
  • 91 Assanasen P. et al. The nasal passage of subjects with asthma has a decreased ability to warm and humidify inspired air. Am J Respir Crit Care Med 2001; 164: 1640-1646
  • 92 Naclerio RM. et al. Observations on the ability of the nose to warm and humidify inspired air. Rhinology 2007; 45: 102-111
  • 93 Eccles R. Is the common cold a clinical entity or a cultural concept?. Rhinology 2013; 51: 3-8
  • 94 Lewis-Rogers N, Bendall ML, Crandall KA. Phylogenetic relationships and molecular adaptation dynamics of human rhinoviruses. Mol Biol Evol 2009; 26: 969-981
  • 95 Palmenberg AC. et al. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 2009; 324: 55-59
  • 96 Caliskan M. et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med 2013; 368: 1398-1407
  • 97 Bianco A. et al. Th2 cytokines exert a dominant influence on epithelial cell expression of the major group human rhinovirus receptor, ICAM-1. Eur Respir J 1998; 12: 619-626
  • 98 Xepapadaki P. et al. Duration of postviral airway hyperresponsiveness in children with asthma: effect of atopy. J Allergy Clin Immunol 2005; 116: 299-304
  • 99 Toussaint M. et al. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med 2017; 23: 681-691
  • 100 Bartlett NW. et al. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med 2008; 14: 199-204
  • 101 Institut, R.K. Influenza. Robert Koch Website, online am 10.10.2017: p. http://www.rki.de/DE/Content/InfAZ/I/Influenza/IPV/IPV_Node.html
  • 102 Zomer-Kooijker K. et al. Increased risk of wheeze and decreased lung function after respiratory syncytial virus infection. PLoS One 2014; 9: e87162
  • 103 Sigurs N. et al. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am J Respir Crit Care Med 2000; 161: 1501-1507
  • 104 American Academy of Pediatrics Committee on Infectious, D. and C. American Academy of Pediatrics Bronchiolitis Guidelines, Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 2014; 134: e620-e638
  • 105 Heinecke L. et al. Induction of B7-H1 and B7-DC expression on airway epithelial cells by the Toll-like receptor 3 agonist double-stranded RNA and human rhinovirus infection: In vivo and in vitro studies. J Allergy Clin Immunol 2008; 121: 1155-1160
  • 106 Seshadri S. et al. Increased expression of the epithelial anion transporter pendrin/SLC26A4 in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol 2015; 136: 1548-1558 e7
  • 107 Fokkens WJ. et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. Rhinology 2012; 50 (Suppl. 23) 1-305
  • 108 Wang DY. et al. A survey on the management of acute rhinosinusitis among Asian physicians. Rhinology 2011; 49: 264-271
  • 109 Revai K. et al. Incidence of acute otitis media and sinusitis complicating upper respiratory tract infection: the effect of age. Pediatrics 2007; 119: e1408-e1412
  • 110 Wang JH, Kwon HJ, Jang YJ. Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope 2009; 119: 1406-1411
  • 111 Woytschak J. et al. Type 2 Interleukin-4 Receptor Signaling in Neutrophils Antagonizes Their Expansion and Migration during Infection and Inflammation. Immunity 2016; 45: 172-184
  • 112 Cohen M. et al. Biofilms in chronic rhinosinusitis: a review. Am J Rhinol Allergy 2009; 23: 255-260
  • 113 Abreu NA. et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci Transl Med 2012; 4: 151ra124
  • 114 Choi EB. et al. Decreased diversity of nasal microbiota and their secreted extracellular vesicles in patients with chronic rhinosinusitis based on a metagenomic analysis. Allergy 2014; 69: 517-526
  • 115 Corriveau MN. et al. Detection of Staphylococcus aureus in nasal tissue with peptide nucleic acid-fluorescence in situ hybridization. Am J Rhinol Allergy 2009; 23: 461-465
  • 116 Song WJ. et al. Staphylococcal enterotoxin sensitization in a community-based population: a potential role in adult-onset asthma. Clin Exp Allergy 2014; 44: 553-562
  • 117 Akdis M. et al. Skin homing (cutaneous lymphocyte-associated antigen-positive) CD8 + T cells respond to superantigen and contribute to eosinophilia and IgE production in atopic dermatitis. J Immunol 1999; 163: 466-475
  • 118 Vrieze A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-916 e7
  • 119 Hastan D. et al. Chronic rhinosinusitis in Europe – an underestimated disease. A GA(2)LEN study. Allergy 2011; 66: 1216-1223
  • 120 Beule AG. [Epidemiology of chronic rhinosinusitis, selected risk factors, comorbidities and economic burden]. Laryngorhinootologie 2015; 94 (Suppl. 01) S1-S23
  • 121 Bousquet J. et al. Allergic Rhinitis and its Impact on Asthma (ARIA): Achievements in 10 years and future needs. J Allergy Clin Immunol 2012; 130: 1049-1062
  • 122 Bousquet J. et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy 2008; 63 (Suppl. 86) 8-160
  • 123 Pearce N. et al. Self-reported prevalence of asthma symptoms in children in Australia, England, Germany and New Zealand: An international comparison using the ISAAC protocol. Eur Respir J 1993; 6: 1455-1461
  • 124 Langen U, Schmitz R, Steppuhn H. Prevalence of allergic diseases in Germany: results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013; 56: 698-706
  • 125 Haftenberger M. et al. Prevalence of sensitisation to aeraoallergens and food allergens: Results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013; 56: 687-697
  • 126 Schmitz R, Kuhnert R, Thamm M. 12-Monats-Prävalenz von Allergien in Deutschland. Journal of Health Monitoring 2017; 2: 77-82
  • 127 Meltzer EO. et al. Sleep, quality of life, and productivity impact of nasal symptoms in the United States: findings from the Burden of Rhinitis in America survey. Allergy Asthma Proc 2009; 30: 244-254
  • 128 Biermann J, MHF Wehrmann W, Klimek L, Wasem J. Allergische Erkrankungen der Atemwege-Ergebnisse einer umfassenden Patientenkohorte in der deutschen gesetzlichen Krankenversicherung. Allergo Journal 2013; 22: 363-373
  • 129 Pfaar O. et al. Guideline on allergen-specific immunotherapy in IgE-mediated allergic diseases: S2k Guideline of the German Society for Allergology and Clinical Immunology (DGAKI), the Society for Pediatric Allergy and Environmental Medicine (GPA), the Medical Association of German Allergologists (AeDA), the Austrian Society for Allergy and Immunology (OGAI), the Swiss Society for Allergy and Immunology (SGAI), the German Society of Dermatology (DDG), the German Society of Oto- Rhino-Laryngology, Head and Neck Surgery (DGHNO-KHC), the German Society of Pediatrics and Adolescent Medicine (DGKJ), the Society for Pediatric Pneumology (GPP), the German Respiratory Society (DGP), the German Association of ENT Surgeons (BV-HNO), the Professional Federation of Paediatricians and Youth Doctors (BVKJ), the Federal Association of Pulmonologists (BDP) and the German Dermatologists Association (BVDD). Allergo J Int 2014; 23: 282-319
  • 130 Calderon MA. et al. Allergen injection immunotherapy for seasonal allergic rhinitis. Cochrane Database Syst Rev 2007; CD001936
  • 131 Radulovic S. et al. Sublingual immunotherapy for allergic rhinitis. Cochrane Database Syst Rev 2010; CD002893
  • 132 Radulovic S. et al. Systematic reviews of sublingual immunotherapy (SLIT). Allergy 2011; 66: 740-752
  • 133 Nelson H. et al. Network meta-analysis shows commercialized subcutaneous and sublingual grass products have comparable efficacy. J Allergy Clin Immunol Pract 2015; 3: 256-266 e3
  • 134 Jacobsen L. et al. Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study. Allergy 2007; 62: 943-948
  • 135 Niggemann B. et al. Five-year follow-up on the PAT study: specific immunotherapy and long-term prevention of asthma in children. Allergy 2006; 61: 855-859
  • 136 Valovirta E et al. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy. J Allergy Clin Immunol 2017 Jul 6. pii: S0091–6749(17)31088–6
  • 137 Kurukulaaratchy RJ. et al. Identifying the heterogeneity of young adult rhinitis through cluster analysis in the Isle of Wight birth cohort. J Allergy Clin Immunol 2015; 135: 143-150
  • 138 Glowania A, CM Klimek L, Chaker A. Rhinitis – allergic or not?. Allergo Journal 2012; 08: 486-498
  • 139 Hellings PW. et al. Non-allergic rhinitis: Position paper of the European Academy of Allergy and Clinical Immunology. Allergy 2017; 72: 1657-1665
  • 140 Becker S. et al. Non-allergic rhinitis with eosinophilia syndrome is not associated with local production of specific IgE in nasal mucosa. Eur Arch Otorhinolaryngol 2016; 273: 1469-1475
  • 141 Van Gerven L. et al. Capsaicin treatment reduces nasal hyperreactivity and transient receptor potential cation channel subfamily V, receptor 1 (TRPV1) overexpression in patients with idiopathic rhinitis. J Allergy Clin Immunol 2014; 133: 1332-1339 e1–e3
  • 142 Wagenmann M, Scheckenbach K, Chaker AM. Endotypes in Chronic Rhinosinusitis: Biomarkers Based on a Mechanistic Insight for Targeted Treatment?. ORL J Otorhinolaryngol Relat Spec 2017; 79: 78-84
  • 143 Hirsch AG. et al. Nasal and sinus symptoms and chronic rhinosinusitis in a population-based sample. Allergy 2017; 72: 274-281
  • 144 Rudmik L, Smith TL. Quality of life in patients with chronic rhinosinusitis. Curr Allergy Asthma Rep 2011; 11: 247-252
  • 145 Rajan JP. et al. Prevalence of aspirin-exacerbated respiratory disease among asthmatic patients: A meta-analysis of the literature. J Allergy Clin Immunol 2015; 135 (676/81) e1
  • 146 Zhang N. et al. An update on the impact of Staphylococcus aureus enterotoxins in chronic sinusitis with nasal polyposis. Rhinology 2005; 43: 162-168
  • 147 Knopf A. et al. Rheumatic disorders affecting the head and neck: Underestimated diseases. Rheumatology (Oxford) 2011; 50: 2029-2034
  • 148 Hofauer B. et al. Liposomal local therapy of sinunasal symptoms in ANCA associated vasculitis. Laryngorhinootologie 2014; 93: 461-466
  • 149 Woywodt A, Matteson EL. Wegener's granulomatosis – probing the untold past of the man behind the eponym. Rheumatology (Oxford) 2006; 45: 1303-1306
  • 150 Craven A. et al. ACR/EULAR-endorsed study to develop Diagnostic and Classification Criteria for Vasculitis (DCVAS). Clin Exp Nephrol 2013; 17: 619-621
  • 151 Yates M. et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis 2016; 75: 1583-1594
  • 152 Wechsler ME. et al. Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. N Engl J Med 2017; 376: 1921-1932
  • 153 De Gaudemar I. et al. Is nasal polyposis in cystic fibrosis a direct manifestation of genetic mutation or a complication of chronic infection?. Rhinology 1996; 34: 194-197
  • 154 Claeys S. et al. Nasal polyps in patients with and without cystic fibrosis: a differentiation by innate markers and inflammatory mediators. Clin Exp Allergy 2005; 35: 467-472
  • 155 Steinke JW, Borish L. Chronic rhinosinusitis phenotypes. Ann Allergy Asthma Immunol 2016; 117: 234-240
  • 156 Kartagener M. Zur Pathogenese der Bronchektasien bei Situs viscerum inversus. Beiträge Klin. Tuberk 1933; 83: 489-511
  • 157 Degano B. et al. Expression of nitric oxide synthases in primary ciliary dyskinesia. Hum Pathol 2011; 42: 1855-1861
  • 158 Marthin JK, Nielsen KG. Choice of nasal nitric oxide technique as first-line test for primary ciliary dyskinesia. Eur Respir J 2011; 37: 559-565
  • 159 Joensen O. et al. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections. PLoS One 2014; 9: e115584
  • 160 Soler ZM. et al. Cluster analysis and prediction of treatment outcomes for chronic rhinosinusitis. J Allergy Clin Immunol 2016; 137: 1054-1062
  • 161 Derycke L. et al. Mixed T helper cell signatures in chronic rhinosinusitis with and without polyps. PLoS One 2014; 9: e97581
  • 162 Zhang N. et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol 2008; 122: 961-968
  • 163 Katotomichelakis M. et al. Inflammatory patterns in upper airway disease in the same geographical area may change over time. Am J Rhinol Allergy 2013; 27: 354-360
  • 164 Ba L. et al. The association between bacterial colonization and inflammatory pattern in Chinese chronic rhinosinusitis patients with nasal polyps. Allergy 2011; 66: 1296-1303
  • 165 Derycke L. et al. IL-17 A as a regulator of neutrophil survival in nasal polyp disease of patients with and without cystic fibrosis. J Cyst Fibros 2012; 11: 193-200
  • 166 Wen W. et al. Increased neutrophilia in nasal polyps reduces the response to oral corticosteroid therapy. J Allergy Clin Immunol 2012; 129: 1522-1528 e5
  • 167 Milara J. et al. Mucin 1 downregulation associates with corticosteroid resistance in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2015; 135: 470-476
  • 168 Anderson GP. Endotyping asthma: New insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 2008; 372: 1107-1119
  • 169 Lotvall J. et al. Asthma endotypes: A new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 2011; 127: 355-360
  • 170 Wenzel SE. Complex phenotypes in asthma: Current definitions. Pulm Pharmacol Ther 2013; 26: 710-715
  • 171 Tomassen P. et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol 2016; 137: 1449-1456 e4
  • 172 De Greve G. et al. Endotype-driven treatment in chronic upper airway diseases. Clin Transl Allergy 2017; 7: 22
  • 173 Akdis CA. et al. Endotypes and phenotypes of chronic rhinosinusitis: A PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2013; 131: 1479-1490
  • 174 Schmitt J. et al. Allergy immunotherapy for allergic rhinitis effectively prevents asthma: Results from a large retrospective cohort study. J Allergy Clin Immunol 2015; 136: 1511-1516
  • 175 Hopkins C, Andrews P, Holy CE. Does time to endoscopic sinus surgery impact outcomes in chronic rhinosinusitis? Retrospective analysis using the UK clinical practice research data. Rhinology 2015; 53: 18-24
  • 176 Benninger MS. et al. Impact of medically recalcitrant chronic rhinosinusitis on incidence of asthma. Int Forum Allergy Rhinol 2016; 6: 124-129
  • 177 Hopkins C, Rimmer J, Lund VJ. Does time to endoscopic sinus surgery impact outcomes in Chronic Rhinosinusitis? Prospective findings from the National Comparative Audit of Surgery for Nasal Polyposis and Chronic Rhinosinusitis. Rhinology 2015; 53: 10-17
  • 178 Benninger MS. et al. Early versus delayed endoscopic sinus surgery in patients with chronic rhinosinusitis: impact on health care utilization. Otolaryngol Head Neck Surg 2015; 152: 546-552
  • 179 Stuck BA et al. Guideline for “rhinosinusitis”-long version: S2k guideline of the German College of General Practitioners and Family Physicians and the German Society for Oto-Rhino-Laryngology, Head and Neck Surgery. HNO 2017
  • 180 Messerklinger W. The ethmoidal infundibulum and its inflammatory illnesses (author's transl). Arch Otorhinolaryngol 1979; 222: 11-22
  • 181 Stammberger H, Posawetz W. Functional endoscopic sinus surgery. Concept, indications and results of the Messerklinger technique. Eur Arch Otorhinolaryngol 1990; 247: 63-76
  • 182 Rimmer J. et al. Surgical versus medical interventions for chronic rhinosinusitis with nasal polyps. Cochrane Database Syst Rev 2014; CD006991
  • 183 Sharma R. et al. Surgical interventions for chronic rhinosinusitis with nasal polyps. Cochrane Database Syst Rev 2014; CD006990
  • 184 Rudmik L. et al. Topical therapies in the management of chronic rhinosinusitis: an evidence-based review with recommendations. Int Forum Allergy Rhinol 2013; 3: 281-298
  • 185 Kalish L. et al. WITHDRAWN: Topical steroids for nasal polyps. Cochrane Database Syst Rev 2016; 4: CD006549
  • 186 Chong LY. et al. Intranasal steroids versus placebo or no intervention for chronic rhinosinusitis. Cochrane Database Syst Rev 2016; 4: CD011996
  • 187 Chong LY. et al. Different types of intranasal steroids for chronic rhinosinusitis. Cochrane Database Syst Rev 2016; 4: CD011993
  • 188 Tokunaga T. et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy 2015; 70: 995-1003
  • 189 Hellings PW. et al. Uncontrolled allergic rhinitis and chronic rhinosinusitis: where do we stand today?. Allergy 2013; 68: 1-7
  • 190 Philpott C. et al. The burden of revision sinonasal surgery in the UK-data from the Chronic Rhinosinusitis Epidemiology Study (CRES): A cross-sectional study. BMJ Open 2015; 5: e006680
  • 191 Nabi S. et al. Nasal spray adherence after sinus surgery: Problems and predictors. J Otolaryngol Head Neck Surg 2012; 41 (Suppl. 01) S49-S55
  • 192 Bousquet J. et al. Unmet needs in severe chronic upper airway disease (SCUAD). J Allergy Clin Immunol 2009; 124: 428-433
  • 193 Ishizaka K, Ishizaka T, Hornbrook MM. Allergen-binding activity of gamma-E, gamma-G and gamma-A antibodies in sera from atopic patients. In vitro measurements of reaginic antibody. J Immunol 1967; 98: 490-501
  • 194 Johansson SG, Bennich H. Immunological studies of an atypical (myeloma) immunoglobulin. Immunology 1967; 13: 381-394
  • 195 Johansson SG. Raised levels of a new immunoglobulin class (IgND) in asthma. Lancet 1967; 2: 951-953
  • 196 Ring J, Bergmann C. Geschichte der Allergologie. Biedermann, Heppt, Renz, Röcken: Allergologie 2016; 1: 3-9
  • 197 Casale TB. et al. Effect of omalizumab on symptoms of seasonal allergic rhinitis: A randomized controlled trial. JAMA 2001; 286: 2956-2967
  • 198 Chervinsky P. et al. Omalizumab, an anti-IgE antibody, in the treatment of adults and adolescents with perennial allergic rhinitis. Ann Allergy Asthma Immunol 2003; 91: 160-167
  • 199 Kopp MV. et al. The effect of anti-IgE treatment on in vitro leukotriene release in children with seasonal allergic rhinitis. J Allergy Clin Immunol 2002; 110: 728-735
  • 200 Klunker S. et al. Combination treatment with omalizumab and rush immunotherapy for ragweed-induced allergic rhinitis: Inhibition of IgE-facilitated allergen binding. J Allergy Clin Immunol 2007; 120: 688-695
  • 201 Kopp MV. et al. Combination of omalizumab and specific immunotherapy is superior to immunotherapy in patients with seasonal allergic rhinoconjunctivitis and co-morbid seasonal allergic asthma. Clin Exp Allergy 2009; 39: 271-279
  • 202 MacGinnitie AJ. et al. Omalizumab facilitates rapid oral desensitization for peanut allergy. J Allergy Clin Immunol 2017; 139: 873-881 e8
  • 203 Kopp MV. Role of immunmodulators in allergen-specific immunotherapy. Allergy 2011; 66: 792-797
  • 204 Akdis CA, Akdis M. Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J Allergy Clin Immunol 2009; 123: 735-746 quiz 747-748
  • 205 Mobs C. et al. Birch pollen immunotherapy results in long-term loss of Bet v 1-specific TH2 responses, transient TR1 activation, and synthesis of IgE-blocking antibodies. J Allergy Clin Immunol 2012; 130: 1108-1116 e6
  • 206 Wambre E. et al. Differentiation stage determines pathologic and protective allergen-specific CD4 + T-cell outcomes during specific immunotherapy. J Allergy Clin Immunol 2012; 129: 544-551 551 e1–e7
  • 207 Gabrielsson S. et al. Specific immunotherapy prevents increased levels of allergen-specific IL-4- and IL-13-producing cells during pollen season. Allergy 2001; 56: 293-300
  • 208 Michaud B. et al. Quantification of circulating house dust mite-specific IL-4- and IL-13-secreting T cells correlates with rhinitis severity in asthmatic children and varies with the seasons. Clin Exp Allergy 2014; 44: 222-230
  • 209 Francis JN, Till SJ, Durham SR. Induction of IL-10 + CD4 + CD25 + T cells by grass pollen immunotherapy. J Allergy Clin Immunol 2003; 111: 1255-1261
  • 210 Radulovic S. et al. Grass pollen immunotherapy induces Foxp3-expressing CD4 + CD25 + cells in the nasal mucosa. J Allergy Clin Immunol 2008; 121: 1467-1472 1472 e1
  • 211 Robinson DS, Larche M, Durham SR. Tregs and allergic disease. J Clin Invest 2004; 114: 1389-1397
  • 212 Till S. et al. IL-5 production by allergen-stimulated T cells following grass pollen immunotherapy for seasonal allergic rhinitis. Clin Exp Immunol 1997; 110: 114-121
  • 213 Yang M. et al. Interleukin-13 mediates airways hyperreactivity through the IL-4 receptor-alpha chain and STAT-6 independently of IL-5 and eotaxin. Am J Respir Cell Mol Biol 2001; 25: 522-530
  • 214 Mantel PY et al. GATA3-driven Th2 responses inhibit TGF-beta1-induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol 2007; 5 (e329)
  • 215 Chaker AM. et al. Short-term subcutaneous grass pollen immunotherapy under the umbrella of anti-IL-4: A randomized controlled trial. J Allergy Clin Immunol 2016; 137: 452-461 e9
  • 216 Johansson SG. IgE in allergic diseases. Proc R Soc Med 1969; 62: 975-976
  • 217 Donovan R. et al. Immunoglobulins in nasal polyp fluid. Int Arch Allergy Appl Immunol 1970; 37: 154-166
  • 218 Whiteside TL. et al. The presence of IgE on the surface of lymphocytes in nasal polyps. J Allergy Clin Immunol 1975; 55: 186-194
  • 219 Van Zele T. et al. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J Allergy Clin Immunol 2004; 114: 981-983
  • 220 Penn R, Mikula S. The role of anti-IgE immunoglobulin therapy in nasal polyposis: A pilot study. Am J Rhinol 2007; 21: 428-432
  • 221 Guglielmo M. et al. Recalcitrant nasal polyposis: achievement of total remission following treatment with omalizumab. J Investig Allergol Clin Immunol 2009; 19: 158-159
  • 222 Vennera Mdel C. et al. Efficacy of omalizumab in the treatment of nasal polyps. Thorax 2011; 66: 824-825
  • 223 Pinto JM. et al. A randomized, double-blind, placebo-controlled trial of anti-IgE for chronic rhinosinusitis. Rhinology 2010; 48: 318-324
  • 224 Gevaert P. et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol 2013; 131: 110-116 e1
  • 225 Lowe PJ, Renard D. Omalizumab decreases IgE production in patients with allergic (IgE-mediated) asthma; PKPD analysis of a biomarker, total IgE. Br J Clin Pharmacol 2011; 72: 306-320
  • 226 Castro M. et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med 2011; 184: 1125-1132
  • 227 Haldar P. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 2009; 360: 973-984
  • 228 Nair P. et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 2009; 360: 985-993
  • 229 Gevaert P. et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol 2011; 128: 989-995 e1–e8
  • 230 Bachert C. et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: Randomized trial. J Allergy Clin Immunol 2017; 140: 1024-1031 e14
  • 231 Casale TB. Biologics and biomarkers for asthma, urticaria, and nasal polyposis. J Allergy Clin Immunol 2017; 139: 1411-1421
  • 232 Wenzel S. et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 2013; 368: 2455-2466
  • 233 Beck LA. et al. Dupilumab treatment in adults with moderate-to severe atopic dermatitis. N Engl J Med 2014; 371: 130-139
  • 234 Simpson EL. et al. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N Engl J Med 2016; 375: 2335-2348
  • 235 Jung YG. et al. Predictive capabilities of serum eosinophil cationic protein, percentage of eosinophils and total immunoglobulin E in allergic rhinitis without bronchial asthma. J Int Med Res 2011; 39: 2209-2216
  • 236 Shamji MH. et al. Biomarkers for monitoring clinical efficacy of allergen immunotherapy for allergic rhinoconjunctivitis and allergic asthma: an EAACI Position Paper. Allergy 2017; 72: 1156-1173
  • 237 Kim SH. et al. Dipeptidyl-peptidase 10 as a genetic biomarker for the aspirin-exacerbated respiratory disease phenotype. Ann Allergy Asthma Immunol 2015; 114: 208-213
  • 238 Dietz K. et al. Age dictates a steroid-resistant cascade of Wnt5a, transglutaminase 2, and leukotrienes in inflamed airways. J Allergy Clin Immunol 2017; 139: 1343-1354.e6
  • 239 Boscke R. et al. Wnt Signaling in Chronic Rhinosinusitis with Nasal Polyps. Am J Respir Cell Mol Biol 2017; 56: 575-584
  • 240 Zissler UM. et al. Current and future biomarkers in allergic asthma. Allergy 2016; 71: 475-494
  • 241 Corren J. et al. Lebrikizumab treatment in adults with asthma. N Engl J Med 2011; 365: 1088-1098
  • 242 Bujarski S, Parulekar AD, Hanania NA. Lebrikizumab in the treatment of asthma. Expert Opin Biol Ther 2016
  • 243 Hanania NA. et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): Replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir Med 2016; 4: 781-796
  • 244 De Schryver E. et al. The effect of systemic treatments on periostin expression reflects their interference with the eosinophilic inflammation in chronic rhinosinusitis with nasal polyps. Rhinology 2017; 55: 152-160
  • 245 Gevaert P. et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J Allergy Clin Immunol 2006; 118: 1133-1141
  • 246 Matricardi PM. et al. EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 (Suppl. 23) 1-250
  • 247 Klimek L, Becker S. Molecular component-resolved allergy diagnostics in ENT. HNO 2017; 65: 818-825
  • 248 Chaker AM, Klimek L. Individualized, personalized and stratified medicine: a challenge for allergology in ENT?. HNO 2015; 63: 334-342
  • 249 Ethikrat Deutschland, Forum Bioethik: Die Medizin nimmt’s persönlich. 2009 (http://www.ethikrat.org/dateien/pdf/fb_2009-06-24_simultanmitschrift.pdf am 04.01.2018)
  • 250 Muller-Berghaus J. et al. Special considerations for the regulation of biological medicinal products in individualised medicine. More than stratified medicine. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013; 56: 1538-1544
  • 251 Green RC, Lautenbach D, McGuire AL. GINA, genetic discrimination, and genomic medicine. N Engl J Med 2015; 372: 397-399
  • 252 Siest G. Systems medicine, stratified medicine, personalized medicine but not precision medicine. Drug Metabol Drug Interact 2014; 29: 1-2