Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(15): 1817-1821
DOI: 10.1055/s-0043-1763663
DOI: 10.1055/s-0043-1763663
letter
Palladium-Catalyzed Cycloisomerization of Carbamimidothioates
This work was financially supported in part by JSPS KAKENHI Grants Numbers JP19H02725 and JP22H02087, and a Waseda University Grant for Special Research Projects.
Abstract
A palladium-catalyzed cycloisomerization of carbamimidothioates with the formation of a quaternary carbon and a sulfide is described. The use of (IPr)Pd(allyl)Cl (CX21), K3PO4, and Me-C(OTBS)=NTBS in refluxing xylenes was optimal, and the methoxycarbonyl group was the most suitable substituent for the nitrogen atom of the carbamimidothioate. Phenyl and alkyl groups can be used as tethers for carbamimidothioates, and alkyl and aryl carbamimidothioates can undergo Pd-catalyzed cycloisomerization in high yields.
Key words
carbamimidothioates - cycloisomerization - palladium catalysis - quaternary carbon - sulfidesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1763663.
- Supporting Information
Publication History
Received: 11 November 2023
Accepted after revision: 29 November 2023
Article published online:
30 January 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Hosseyni S, Wojtas L, Li M, Shi X. J. Am. Chem. Soc. 2016; 138: 3994
- 1b Aubert C, Fensterbank L, Garcia P, Malacria M, Simonneau A. Chem. Rev. 2011; 111: 1954
- 1c Nolan SP. Acc. Chem. Res. 2011; 44: 91
- 1d Michelet V, Toullec PY, Genêt J.-P. Angew. Chem. Int. Ed. 2008; 47: 4268
- 1e Fürstner A, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
- 2a Delcaillau T, Schmitt HL, Boehm P, Falk E, Morandi B. ACS Catal. 2022; 12: 6081
- 2b Wu J, Xu W.-H, Lu H, Xu P.-F. Adv. Synth. Catal. 2021; 363: 3013
- 2c Koester DC, Kobayashi M, Werz DB, Nakao Y. J. Am. Chem. Soc. 2012; 134: 6544
- 2d Toyofuku M, Murase E, Nagai H, Fujiwara S.-i, Shin-ike T, Kuniyasu H, Kambe N. Eur. J. Org. Chem. 2009; 3141
- 2e Marchese AD, Durant AG, Reid CM, Jans C, Arora R, Lautens M. J. Am. Chem. Soc. 2022; 144: 20554
- 2f Chen X, Zhao J, Dong M, Yang N, Wang J, Zhang Y, Liu K, Tong X. J. Am. Chem. Soc. 2021; 143: 1924
- 2g Newman SG, Howell JK, Nicolaus N, Lautens M. J. Am. Chem. Soc. 2011; 133: 14916
- 2h Liu H, Li C, Qiu D, Tong X. J. Am. Chem. Soc. 2011; 133: 6187
- 2i Newman SG, Lautens M. J. Am. Chem. Soc. 2011; 133: 1778
- 2j Kamisaki H, Yasui Y, Takemoto Y. Tetrahedron Lett. 2009; 50: 2589
- 2k Yasui Y, Takeda H, Takemoto Y. Chem. Pharm. Bull. 2008; 56: 1567
- 2l Yasui Y, Takemoto Y. Chem. Rec. 2008; 8: 386
- 2m Kobayashi Y, Kamisaki H, Takeda H, Yasui Y, Yanada R, Takemoto Y. Tetrahedron 2007; 63: 2978
- 2n Kobayashi Y, Kamisaki H, Yanada R, Takemoto Y. Org. Lett. 2006; 8: 2771
- 3a Hosoya Y, Yasukochi H, Mizoguchi K, Nakada M. Heterocycles 2022; 104: 655
- 3b Hosoya Y, Kobayashi I, Mizoguchi K, Nakada M. Org. Lett. 2019; 21: 8280
- 4 Hosoya Y, Mizoguchi K, Yasukochi H, Nakada M. Synlett 2022; 33: 495
- 5 Ito R, Okura F, Nakada M. Synlett 2023; 34: 2319
- 6 Tomizawa T, Orimoto K, Niwa T, Nakada M. Org. Lett. 2012; 14: 6294
- 7 Viciu MS, Germaneau RF, Navarro-Fernandez O, Stevens ED, Nolan SP. Organometallics 2002; 21: 5470
- 8 Silylating reagents may accelerate the formation of Pd(0) species; for a related reference, see: Marion N, Navarro O, Mei J, Stevens ED, Scott NM, Nolan SP. J. Am. Chem. Soc. 2006; 128: 4101
- 9 For the preparation of 13b–e, see the Supporting Information.
- 10 For the preparation of 13f–q, see the Supporting Information.
- 11 For the preparation of 15a–f, see the Supporting Information.
- 12 Methyl {1,3-Dimethyl-3-[(phenylsulfanyl)methyl]-1,3-dihydro-2H-indol-2-ylidene}carbamate (14a); Typical Procedure A 10 mL test tube was charged with 13a (20.0 mg, 0.059mmol), K3PO4 (37.4 mg, 0.176 mmol, 3.0 equiv), BTBSA (0.0394 mL, 0.118 mmol, 2.0 equiv), CX20 (3.4 mg, 0.00594 mmol, 10 mol%), and xylenes (5.9 mL). The mixture was degassed and refluxed for 2 h, then cooled to r.t. H2O (2 mL) was added, and the aqueous layer was extracted with EtOAc (3 × 2 mL). The combined organic layer was dried (Na2SO4), filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography [silica gel, CH2Cl2 (one drop) + hexane–EtOAc (20:1 to 10:1)] to give a colorless oil; yield: 19.2 mg (96%); Rf = 0.41 (hexane–EtOAc, 2:1). 1H NMR (400 MHz, CDCl3): δ = 7.26 (dd, J = 7.3 Hz, 1 H), 7.10–7.20 (m, 6 H), 6.96 (dd, J = 7.8, 7.3 Hz, 1 H), 6.85 (d, J = 7.8 Hz, 1 H), 3.98 (d, J = 12.8 Hz, 1 H), 3.73 (s, 3 H), 3.51 (d, J = 12.8 Hz, 1 H), 3.28 (s, 3 H), 1.61 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 170.4, 161.6, 143.6, 136.1, 134.2, 130.9, 128.7, 128.5, 126.5, 122.8, 122.5, 108.3, 53.0, 52.4, 43.4, 28.6, 23.1. HRMS (ESI): m/z [M + Na]+ calcd for C19H20N2NaO2S: 363.1138; found: 363.1138.
For selected papers, see:
Selected papers on Pd-catalyzed reactions; for carbothiolation, see:
Thioacylation:
Oxycyanation:
Selenocarbamoylation:
Carboiodination and Carbohalogenation:
Cyanoamidation: