Semin Neurol 2023; 43(02): 205-218
DOI: 10.1055/s-0043-1767771
Review Article

Neuroimaging of COVID-19

Jisoo Kim
1   Division of Neuroradiology, Department of Radiology, Harvard Medical School & Brigham and Women's Hospital, Boston, Massachusetts
,
Geoffrey S. Young
1   Division of Neuroradiology, Department of Radiology, Harvard Medical School & Brigham and Women's Hospital, Boston, Massachusetts
› Author Affiliations

Abstract

We review the wide variety of common neuroimaging manifestations related to coronavirus disease 2019 (COVID-19) and COVID therapies, grouping the entities by likely pathophysiology, recognizing that the etiology of many entities remains uncertain. Direct viral invasion likely contributes to olfactory bulb abnormalities. COVID meningoencephalitis may represent direct viral infection and/or autoimmune inflammation. Para-infectious inflammation and inflammatory demyelination at the time of infection are likely primary contributors to acute necrotizing encephalopathy, cytotoxic lesion of the corpus callosum, and diffuse white matter abnormality. Later postinfectious inflammation and demyelination may manifest as acute demyelinating encephalomyelitis, Guillain–Barré syndrome, or transverse myelitis. The hallmark vascular inflammation and coagulopathy of COVID-19 may produce acute ischemic infarction, microinfarction contributing to white matter abnormality, space-occupying hemorrhage or microhemorrhage, venous thrombosis, and posterior reversible encephalopathy syndrome. Adverse effects of therapies including zinc, chloroquine/hydroxychloroquine, antivirals, and vaccines, and current evidence regarding “long COVID” is briefly reviewed. Finally, we present a case of bacterial and fungal superinfection related to immune dysregulation from COVID.



Publication History

Article published online:
28 June 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lou JJ. et al. Neuropathology of COVID−19 (neuro-COVID): clinicopathological update. Free Neuropathol 2021; 2: 2
  • 2 Mao L, Jin H, Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77 (06) 683-690
  • 3 Lechien JR, Chiesa-Estomba CM, De Siati DR. et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID−19): a multicenter European study. Eur Arch Otorhinolaryngol 2020; 277 (08) 2251-2261
  • 4 Yan CH, Faraji F, Prajapati DP, Boone CE, DeConde AS. Association of chemosensory dysfunction and COVID−19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol 2020; 10 (07) 806-813
  • 5 Kandemirli SG, Altundag A, Yildirim D, Tekcan Sanli DE, Saatci O. Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID−19 anosmia. Acad Radiol 2021; 28 (01) 28-35
  • 6 Meinhardt J, Radke J, Dittmayer C. et al. Olfactory transmucosal SARS-CoV−2 invasion as a port of central nervous system entry in individuals with COVID−19. Nat Neurosci 2021; 24 (02) 168-175
  • 7 Morbini P, Benazzo M, Verga L. et al. Ultrastructural evidence of direct viral damage to the olfactory complex in patients testing positive for SARS-CoV−2. JAMA Otolaryngol Head Neck Surg 2020; 146 (10) 972-973
  • 8 Klironomos S, Tzortzakakis A, Kits A. et al. Nervous system involvement in coronavirus disease 2019: results from a retrospective consecutive neuroimaging cohort. Radiology 2020; 297 (03) E324-E334
  • 9 Lee Y, Min P, Lee S, Kim SW. Prevalence and duration of acute loss of smell or taste in COVID−19 patients. J Korean Med Sci 2020; 35 (18) e174
  • 10 Renaud M, Thibault C, Le Normand F. et al. Clinical outcomes for patients with anosmia 1 year after COVID−19 diagnosis. JAMA Netw Open 2021; 4 (06) e2115352
  • 11 Moriguchi T, Harii N, Goto J. et al. A first case of meningitis/encephalitis associated with SARS-coronavirus−2. Int J Infect Dis 2020; 94: 55-58
  • 12 Kremer S, Lersy F, de Sèze J. et al. Brain MRI findings in severe COVID−19: a retrospective observational study. Radiology 2020; 297 (02) E242-E251
  • 13 Kremer S, Lersy F, Anheim M. et al. Neurologic and neuroimaging findings in patients with COVID−19: a retrospective multicenter study. Neurology 2020; 95 (13) e1868-e1882
  • 14 Pilotto A, Masciocchi S, Volonghi I. et al; SARS-CoV−2 related encephalopaties (ENCOVID) Study Group. Clinical presentation and outcomes of severe acute respiratory syndrome coronavirus 2-related encephalitis: the ENCOVID multicenter study. J Infect Dis 2021; 223 (01) 28-37
  • 15 Chougar L, Shor N, Weiss N. et al; CoCo Neurosciences Study Group. Retrospective observational study of brain MRI findings in patients with acute SARS-CoV−2 infection and neurologic manifestations. Radiology 2020; 297 (03) E313-E323
  • 16 Islam MA, Cavestro C, Alam SS, Kundu S, Kamal MA, Reza F. Encephalitis in patients with COVID−19: a systematic evidence-based analysis. Cells 2022; 11 (16) 2575
  • 17 Wu X, Wu W, Pan W, Wu L, Liu K, Zhang HL. Acute necrotizing encephalopathy: an underrecognized clinicoradiologic disorder. Mediators Inflamm 2015; 2015: 792578
  • 18 Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID−19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology 2020; 296 (02) E119-E120
  • 19 Mullaguri N, Sivakumar S, Battineni A, Anand S, Vanderwerf J. COVID−19 related acute hemorrhagic necrotizing encephalitis: a report of two cases and literature review. Cureus 2021; 13 (04) e14236
  • 20 Starkey J, Kobayashi N, Numaguchi Y, Moritani T. Cytotoxic lesions of the corpus callosum that show restricted diffusion: mechanisms, causes, and manifestations. Radiographics 2017; 37 (02) 562-576
  • 21 Gaur P, Dixon L, Jones B, Lyall H, Jan W. COVID−19-associated cytotoxic lesions of the corpus callosum. AJNR Am J Neuroradiol 2020; 41 (10) 1905-1907
  • 22 Abdel-Mannan O, Eyre M, Löbel U. et al. Neurologic and radiographic findings associated with COVID−19 infection in children. JAMA Neurol 2020; 77 (11) 1440-1445
  • 23 Agarwal S, Jain R, Dogra S. et al. Cerebral microbleeds and leukoencephalopathy in critically ill patients with COVID−19. Stroke 2020; 51 (09) 2649-2655
  • 24 Freeman CW, Masur J, Hassankhani A, Wolf RL, Levine JM, Mohan S. Coronavirus disease (COVID−19)-related disseminated leukoencephalopathy: a retrospective study of findings on brain MRI. AJR Am J Roentgenol 2021; 216 (04) 1046-1047
  • 25 Radmanesh A, Derman A, Lui YW. et al. COVID-19-associated diffuse leukoencephalopathy and microhemorrhages. Radiology 2020; 297 (01) E223-E227
  • 26 Yoon BC, Buch K, Lang M. et al. Clinical and neuroimaging correlation in patients with COVID−19. AJNR Am J Neuroradiol 2020; 41 (10) 1791-1796
  • 27 Kumar A, Olivera A, Mueller N, Howard J, Lewis A. Delayed SARS-COV−2 leukoencephalopathy without severe hypoxia. J Neurol Sci 2020; 418: 117146
  • 28 Ismail II, Salama S. Association of CNS demyelination and COVID-19 infection: an updated systematic review. J Neurol 2022; 269 (02) 541-576
  • 29 Marin SE, Callen DJ. The magnetic resonance imaging appearance of monophasic acute disseminated encephalomyelitis: an update post application of the 2007 consensus criteria. Neuroimaging Clin N Am 2013; 23 (02) 245-266
  • 30 Utukuri PS, Bautista A, Lignelli A, Moonis G. Possible acute disseminated encephalomyelitis related to severe acute respiratory syndrome coronavirus 2 infection. AJNR Am J Neuroradiol 2020; 41 (09) E82-E83
  • 31 Zhang T, Hirsh E, Zandieh S, Rodricks MB. COVID−19-associated acute multi-infarct encephalopathy in an asymptomatic CADASIL patient. Neurocrit Care 2021; 34 (03) 1099-1102
  • 32 Manzano GS, McEntire CRS, Martinez-Lage M, Mateen FJ, Hutto SK. Acute disseminated encephalomyelitis and acute hemorrhagic leukoencephalitis following COVID−19: systematic review and meta-synthesis. Neurol Neuroimmunol Neuroinflamm 2021; 8 (06) e1080
  • 33 Tenembaum S, Chamoles N, Fejerman N. Acute disseminated encephalomyelitis: a long-term follow-up study of 84 pediatric patients. Neurology 2002; 59 (08) 1224-1231
  • 34 Finsterer J, Scorza FA. Guillain-Barre syndrome in 220 patients with COVID-19. Egypt J Neurol Psychiat Neurosurg 2021; 57 (01) 55
  • 35 Sansone P, Giaccari LG, Aurilio C. et al. Post-infectious Guillain-Barré syndrome related to SARS-CoV-2 infection: a systematic review. Life (Basel) 2021; 11 (02) 167
  • 36 Byun WM, Park WK, Park BH, Ahn SH, Hwang MS, Chang JC. Guillain-Barré syndrome: MR imaging findings of the spine in eight patients. Radiology 1998; 208 (01) 137-141
  • 37 Zito A, Alfonsi E, Franciotta D. et al. COVID-19 and Guillain-Barré syndrome: a case report and review of literature. Front Neurol 2020; 11: 909
  • 38 Lantos JE, Strauss SB, Lin E. COVID-19-associated Miller Fisher syndrome: MRI findings. AJNR Am J Neuroradiol 2020; 41 (07) 1184-1186
  • 39 Wingerchuk DM, Weinshenker BG. Acute disseminated encephalomyelitis, transverse myelitis, and neuromyelitis optica. Continuum (Minneap Minn) 2013; 19 (4 Multiple Sclerosis): 944-967
  • 40 Advani S, Hosseini SM, Zali A. et al. Transverse myelitis after SARS-CoV-2 infection: report of two cases with COVID-19. Clin Case Rep 2021; 9 (12) e05196
  • 41 Qazi R, Memon A, Mohamed AS, Ali M, Singh R. Post-COVID-19 acute transverse myelitis: a case report and literature review. Cureus 2021; 13 (12) e20628
  • 42 Chow CCN, Magnussen J, Ip J, Su Y. Acute transverse myelitis in COVID-19 infection. BMJ Case Rep 2020; 13 (08) e236720
  • 43 Conway EM, Mackman N, Warren RQ. et al. Understanding COVID-19-associated coagulopathy. Nat Rev Immunol 2022; 22 (10) 639-649
  • 44 Varga Z, Flammer AJ, Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395 (10234): 1417-1418
  • 45 Moonis G, Filippi CG, Kirsch CFE. et al. The spectrum of neuroimaging findings on CT and MRI in adults with COVID-19. AJR Am J Roentgenol 2021; 217 (04) 959-974
  • 46 Merkler AE, Parikh NS, Mir S. et al. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol 2020; 77 (11) 1-7
  • 47 Yaghi S, Ishida K, Torres J. et al. SARS-CoV-2 and stroke in a New York healthcare system. Stroke 2020; 51 (07) 2002-2011
  • 48 Ramos AD, Koyfman F, Byrns K. et al. Characterization of hemorrhagic and ischemic stroke in a diverse cohort of COVID-19 patients. Neurohospitalist 2021; 11 (04) 295-302
  • 49 Bilaloglu S, Aphinyanaphongs Y, Jones S, Iturrate E, Hochman J, Berger JS. Thrombosis in hospitalized patients with COVID-19 in a New York City health system. JAMA 2020; 324 (08) 799-801
  • 50 Kim PH, Kim M, Suh CH. et al. Neuroimaging findings in patients with COVID-19: a systematic review and meta-analysis. Korean J Radiol 2021; 22 (11) 1875-1885
  • 51 Conklin J, Frosch MP, Mukerji SS. et al. Susceptibility-weighted imaging reveals cerebral microvascular injury in severe COVID-19. J Neurol Sci 2021; 421: 117308
  • 52 Eschbacher KL, Larsen RA, Moyer AM, Majumdar R, Reichard RR. Neuropathological findings in COVID-19: an autopsy cohort. J Neuropathol Exp Neurol 2022; 82 (01) 21-28
  • 53 Hellgren L, Birberg Thornberg U, Samuelsson K, Levi R, Divanoglou A, Blystad I. Brain MRI and neuropsychological findings at long-term follow-up after COVID-19 hospitalisation: an observational cohort study. BMJ Open 2021; 11 (10) e055164
  • 54 Keller E, Brandi G, Winklhofer S. et al. Large and small cerebral vessel involvement in severe COVID-19: detailed clinical workup of a case series. Stroke 2020; 51 (12) 3719-3722
  • 55 Tiwari NR, Phatak S, Sharma VR, Agarwal SK. COVID-19 and thrombotic microangiopathies. Thromb Res 2021; 202: 191-198
  • 56 Malgaj Vrecko M, Veceric-Haler Z. Coronavirus disease 2019-associated thrombotic microangiopathy. J Hematol (Brossard) 2022; 11 (04) 148-153
  • 57 Lopes RD, de Barros E Silva PGM, Furtado RHM. et al; ACTION Coalition COVID-19 Brazil IV Investigators. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): an open-label, multicentre, randomised, controlled trial. Lancet 2021; 397 (10291): 2253-2263
  • 58 Singh B, Kaur P, Mekheal EM, Fasulo S, Maroules M. COVID-19 and thrombotic thrombocytopenic purpura: a review of literature. Hematol Transfus Cell Ther 2021; 43 (04) 529-531
  • 59 de Castro JTS, Appenzeller S, Colella MP. et al. Neurological manifestations in thrombotic microangiopathy: imaging features, risk factors and clinical course. PLoS One 2022; 17 (09) e0272290
  • 60 Yu WL, Leung T, Soo Y, Lee J, Wong KS. Thrombotic thrombocytopenic purpura with concomitant small- and large-vessel thrombosis, atypical posterior reversible encephalopathy syndrome and cerebral microbleeds. Oxf Med Case Rep 2015; 2015 (02) 179-182
  • 61 Ellchuk TN, Shah LM, Hewlett RH, Osborn AG. Suspicious neuroimaging pattern of thrombotic microangiopathy. AJNR Am J Neuroradiol 2011; 32 (04) 734-738
  • 62 Lersy F, Anheim M, Willaume T. et al. Cerebral vasculitis of medium-sized vessels as a possible mechanism of brain damage in COVID-19 patients. J Neuroradiol 2021; 48 (03) 141-146
  • 63 Lindenholz A, van der Kolk AG, Zwanenburg JJM, Hendrikse J. The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology 2018; 286 (01) 12-28
  • 64 Dogra S, Jain R, Cao M. et al. Hemorrhagic stroke and anticoagulation in COVID-19. J Stroke Cerebrovasc Dis 2020; 29 (08) 104984
  • 65 Pelizzari L, Cazzoli M, Lipari S. et al. Mid-term MRI evaluation reveals microstructural white matter alterations in COVID-19 fully recovered subjects with anosmia presentation. Ther Adv Neurol Disord 2022; 15: 17 562864221111995
  • 66 Douaud G, Lee S, Alfaro-Almagro F. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022; 604 (7907): 697-707
  • 67 Cavalcanti DD, Raz E, Shapiro M. et al. Cerebral venous thrombosis associated with COVID-19. AJNR Am J Neuroradiol 2020; 41 (08) 1370-1376
  • 68 Tu TM, Goh C, Tan YK. et al. Cerebral venous thrombosis in patients with COVID-19 infection: a case series and systematic review. J Stroke Cerebrovasc Dis 2020; 29 (12) 105379
  • 69 Mowla A, Shakibajahromi B, Shahjouei S. et al. Cerebral venous sinus thrombosis associated with SARS-CoV-2; a multinational case series. J Neurol Sci 2020; 419: 117183
  • 70 Raman R, Devaramane R, Jagadish GM, Chowdaiah S. Various imaging manifestations of posterior reversible encephalopathy syndrome (PRES) on magnetic resonance imaging (MRI). Pol J Radiol 2017; 82: 64-70
  • 71 Fugate JE, Claassen DO, Cloft HJ, Kallmes DF, Kozak OS, Rabinstein AA. Posterior reversible encephalopathy syndrome: associated clinical and radiologic findings. Mayo Clin Proc 2010; 85 (05) 427-432
  • 72 Gewirtz AN, Gao V, Parauda SC, Robbins MS. Posterior reversible encephalopathy syndrome. Curr Pain Headache Rep 2021; 25 (03) 19
  • 73 Lallana S, Chen A, Requena M. et al. Posterior reversible encephalopathy syndrome (PRES) associated with COVID-19. J Clin Neurosci 2021; 88: 108-112
  • 74 Parauda SC, Gao V, Gewirtz AN. et al. Posterior reversible encephalopathy syndrome in patients with COVID-19. J Neurol Sci 2020; 416: 117019
  • 75 Stefanou MI, Palaiodimou L, Bakola E. et al. Neurological manifestations of long-COVID syndrome: a narrative review. Ther Adv Chronic Dis 2022; 13: 20 406223221076890
  • 76 Dressing A, Bormann T, Blazhenets G. et al. Neuropsychologic profiles and cerebral glucose metabolism in neurocognitive long COVID syndrome. J Nucl Med 2022; 63 (07) 1058-1063
  • 77 Kas A, Soret M, Pyatigoskaya N. et al; on the behalf of CoCo-Neurosciences study group and COVID SMIT PSL study group. The cerebral network of COVID-19-related encephalopathy: a longitudinal voxel-based 18F-FDG-PET study. Eur J Nucl Med Mol Imaging 2021; 48 (08) 2543-2557
  • 78 Davis HE, Assaf GS, McCorkell L. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021; 38: 101019
  • 79 Chiang KC, Gupta A. To zinc or not to zinc for COVID-19 prophylaxis or treatment?. J Med Microbiol 2021; 70 (09) 001299
  • 80 Francis Z, Book G, Litvin C, Kalivas B. The COVID-19 pandemic and zinc-induced copper deficiency: an important link. Am J Med 2022; 135 (08) e290-e291
  • 81 Doyno C, Sobieraj DM, Baker WL. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. Clin Toxicol (Phila) 2021; 59 (01) 12-23
  • 82 Shippey EA, Wagler VD, Collamer AN. Hydroxychloroquine: an old drug with new relevance. Cleve Clin J Med 2018; 85 (06) 459-467
  • 83 Sen R, Borghoff K, Foster KW, Radio SJ, Erickson A, Hearth-Holmes M. Hydroxychloroquine and Fabry disease: three case reports examining an unexpected pathologic link and a review of the literature. Case Rep Rheumatol 2022; 2022: 2930103
  • 84 Marchesoni C, Cisneros E, Pfister P. et al. Brain MRI findings in children and adolescents with Fabry disease. J Neurol Sci 2018; 395: 131-134
  • 85 Bonfanti P, Valsecchi L, Parazzini F. et al; Coordinamento Italiano Studio Allergia e Infezione da HIV (CISAI) Group. Incidence of adverse reactions in HIV patients treated with protease inhibitors: a cohort study. J Acquir Immune Defic Syndr 2000; 23 (03) 236-245
  • 86 Cozzupoli GM, Savastano MC, Falsini B, Savastano A, Rizzo S. Possible retinal impairment secondary to ritonavir use in SARS-CoV-2 patients: a narrative systematic review. J Ophthalmol 2020; 2020: 5350494
  • 87 Soontornniyomkij V, Umlauf A, Chung SA. et al. HIV protease inhibitor exposure predicts cerebral small vessel disease. AIDS 2014; 28 (09) 1297-1306
  • 88 García-Grimshaw M, Ceballos-Liceaga SE, Hernández-Vanegas LE. et al. Neurologic adverse events among 704,003 first-dose recipients of the BNT162b2 mRNA COVID-19 vaccine in Mexico: a nationwide descriptive study. Clin Immunol 2021; 229: 108786
  • 89 Rastogi A, Bingeliene A, Strafella AP, Tang-Wai DF, Wu PE, Mandell DM. Reversible neurological and brain MRI changes following COVID-19 vaccination: a case report. J Neuroradiol 2022; 49 (06) 428-430
  • 90 Zuhorn F, Graf T, Klingebiel R, Schäbitz WR, Rogalewski A. Postvaccinal encephalitis after ChAdOx1 nCov-19. Ann Neurol 2021; 90 (03) 506-511
  • 91 Ozgen Kenangil G, Ari BC, Guler C, Demir MK. Acute disseminated encephalomyelitis-like presentation after an inactivated coronavirus vaccine. Acta Neurol Belg 2021; 121 (04) 1089-1091
  • 92 Garg RK, Paliwal VK. Spectrum of neurological complications following COVID-19 vaccination. Neurol Sci 2022; 43 (01) 3-40
  • 93 Iba T, Levy JH, Warkentin TE. Recognizing vaccine-induced immune thrombotic thrombocytopenia. Crit Care Med 2022; 50 (01) e80-e86
  • 94 McGonagle D, De Marco G, Bridgewood C. Mechanisms of immunothrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection. J Autoimmun 2021; 121: 102662
  • 95 Ozonoff A, Nanishi E, Levy O. Bell's palsy and SARS-CoV-2 vaccines. Lancet Infect Dis 2021; 21 (04) 450-452
  • 96 El-Kholy NA, El-Fattah AMA, Khafagy YW. Invasive fungal sinusitis in post COVID-19 patients: a new clinical entity. Laryngoscope 2021; 131 (12) 2652-2658
  • 97 Blitz SE, McMahon JT, Chalif JI. et al. Intracranial complications of hypercoagulability and superinfection in the setting of COVID-19: illustrative cases. J Neurosurg Case Lessons 2022; 3 (21) CASE22127