Semin Neurol 2023; 43(03): 432-438
DOI: 10.1055/s-0043-1771298
Review Article

Robotic Interventional Neuroradiology: Progress, Challenges, and Future Prospects

Shen Ning
1   Department of Radiology, Boston Medical Center, Boston, Massachusetts
2   Department of Radiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
,
Christophe Chautems
3   Nanoflex Robotics, AG, Zurich, Switzerland
,
Yoonho Kim
4   Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
,
Hal Rice
5   Neurointerventional Section, Gold Coast University Hospital, Queensland, Australia
,
Uta Hanning
6   Klinik und Poliklinik für Interventionelle Neuroradiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
,
Sami Al Kasab
7   Department of Neurology, Medical University of South Carolina, Charleston, South Carolina
,
Lukas Meyer
6   Klinik und Poliklinik für Interventionelle Neuroradiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
,
Marios Psychogios
8   Department of Radiology, Basel University Hospital, University of Basel, Switzerland
,
Osama O. Zaidat
9   Department of Neurology, Mercy Vincent Hospital, Toledo, Ohio
,
Ameer E. Hassan
10   Department of Neurology, Valley Baptist Medical Center, University of Texas Rio Grande Valley, Harlingen, Texas
,
Hesham E. Masoud
11   Division of Cerebrovascular, Department of Neurology, Upstate University Hospital, Syracuse, New York
,
Adnan Mujanovic
12   Institute of Diagnostic and Interventional Neuroradiology, Institute of Diagnostic, Interventional and Pediatric Radiology and Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
,
Johannes Kaesmacher
12   Institute of Diagnostic and Interventional Neuroradiology, Institute of Diagnostic, Interventional and Pediatric Radiology and Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
,
Permesh S. Dhillon
13   Interventional Neuroradiology, University of Nottingham, Nottingham, United Kingdom
,
Alice Ma
14   Department of Neurosurgery, Royal North Shore Hospital, St Leonards, New South Wales, Australia
,
Artem Kaliaev
1   Department of Radiology, Boston Medical Center, Boston, Massachusetts
,
Thanh N. Nguyen
1   Department of Radiology, Boston Medical Center, Boston, Massachusetts
15   Department of Neurology, Boston Medical Center, Boston, Massachusetts
,
Mohamad Abdalkader
1   Department of Radiology, Boston Medical Center, Boston, Massachusetts
› Author Affiliations

Abstract

Advances in robotic technology have improved standard techniques in numerous surgical and endovascular specialties, offering more precision, control, and better patient outcomes. Robotic-assisted interventional neuroradiology is an emerging field at the intersection of interventional neuroradiology and biomedical robotics. Endovascular robotics can automate maneuvers to reduce procedure times and increase its safety, reduce occupational hazards associated with ionizing radiations, and expand networks of care to reduce gaps in geographic access to neurointerventions. To date, many robotic neurointerventional procedures have been successfully performed, including cerebral angiography, intracranial aneurysm embolization, carotid stenting, and epistaxis embolization. This review aims to provide a survey of the state of the art in robotic-assisted interventional neuroradiology, consider their technical and adoption limitations, and explore future developments critical for the widespread adoption of robotic-assisted neurointerventions.



Publication History

Article published online:
10 August 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 de'Angelis N, Khan J, Marchegiani F. et al. Robotic surgery in emergency setting: 2021 WSES position paper. World J Emerg Surg 2022; 17 (01) 4
  • 2 Rabinovich EP, Capek S, Kumar JS, Park MS. Tele-robotics and artificial-intelligence in stroke care. J Clin Neurosci 2020; 79: 129-132
  • 3 Beyar R, Gruberg L, Deleanu D. et al. Remote-control percutaneous coronary interventions: concept, validation, and first-in-humans pilot clinical trial. J Am Coll Cardiol 2006; 47 (02) 296-300
  • 4 Lu WS, Xu WY, Zhang J. et al. Application study of medical robots in vascular intervention. Int J Med Robot 2011; 7 (03) 361-366
  • 5 Lu WS, Xu WY, Pan F, Liu D, Tian ZM, Zeng Y. Clinical application of a vascular interventional robot in cerebral angiography. Int J Med Robot 2016; 12 (01) 132-136
  • 6 Vuong SM, Carroll CP, Tackla RD, Jeong WJ, Ringer AJ. Application of emerging technologies to improve access to ischemic stroke care. Neurosurg Focus 2017; 42 (04) E8
  • 7 Mendes Pereira V, Cancelliere NM, Nicholson P. et al. First-in-human, robotic-assisted neuroendovascular intervention. J Neurointerv Surg 2020; 12 (04) 338-340
  • 8 Cancelliere NM, Lynch J, Nicholson P. et al. Robotic-assisted intracranial aneurysm treatment: 1 year follow-up imaging and clinical outcomes. J Neurointerv Surg 2022; 14 (12) 1229-1233
  • 9 Sajja KC, Sweid A, Al Saiegh F. et al. Endovascular robotic: feasibility and proof of principle for diagnostic cerebral angiography and carotid artery stenting. J Neurointerv Surg 2020; 12 (04) 345-349
  • 10 Nogueira RG, Sachdeva R, Al-Bayati AR, Mohammaden MH, Frankel MR, Haussen DC. Robotic assisted carotid artery stenting for the treatment of symptomatic carotid disease: technical feasibility and preliminary results. J Neurointerv Surg 2020; 12 (04) 341-344
  • 11 Piotin M, Blanc R, Turner R. et al. Evaluation of effectiveness and safety of the CorPath® GRX System in endovascular embolization procedures of cerebral aneurysms. J Neurointerv Surg 2022; 14 (Suppl. 02) A15
  • 12 Weisz G, Metzger DC, Caputo RP. et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study. J Am Coll Cardiol 2013; 61 (15) 1596-1600
  • 13 Nelson BJ, Gervasoni S, Chiu PWY, Zhang L, Zemmar A. Magnetically actuated medical robots: an in vivo perspective. Proc IEEE 2022; 110 (07) 1028-1037
  • 14 Hirschberg J. Geschichte Der Augenheilkunde. Vol 6. Berlin: Springer; 1899
  • 15 Faddis MN, Chen J, Osborn J, Talcott M, Cain ME, Lindsay BD. Magnetic guidance system for cardiac electrophysiology: a prospective trial of safety and efficacy in humans. J Am Coll Cardiol 2003; 42 (11) 1952-1958
  • 16 Dabus G, Gerstle RJ, Cross III DT, Derdeyn CP, Moran CJ. Neuroendovascular magnetic navigation: clinical experience in ten patients. Neuroradiology 2007; 49 (04) 351-355
  • 17 Kim Y, Genevriere E, Harker P. et al. Telerobotic neurovascular interventions with magnetic manipulation. Sci Robot 2022; 7 (65) eabg9907
  • 18 Beaman CB, Kaneko N, Meyers PM, Tateshima S. A review of robotic interventional neuroradiology. AJNR Am J Neuroradiol 2021; 42 (05) 808-814
  • 19 Attanasio A, Scaglioni B, De Momi E, Fiorini P, Valdastri P. Annual review of control, robotics, and autonomous systems autonomy in surgical robotics. Annu Rev Control Robot Auton Syst 2021; 4: 651-679
  • 20 Kapur V, Smilowitz NR, Weisz G. Complex robotic-enhanced percutaneous coronary intervention. Catheter Cardiovasc Interv 2014; 83 (06) 915-921
  • 21 Yang GZ, Cambias J, Cleary K. et al. Medical robotics-Regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot 2017; 2 (04) eaam8638
  • 22 Guerra A, Parisi F, Pi D. Liability for robots I: legal challenges. J Inst Econ 2022; 18: 331-343
  • 23 O'Sullivan S, Nevejans N, Allen C. et al. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int J Med Robot 2019; 15 (01) e1968
  • 24 Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of emerging surgical robotic technology. Surg Endosc 2018; 32 (04) 1636-1655
  • 25 Hlivák P, Mlčochová H, Peichl P, Cihák R, Wichterle D, Kautzner J. Robotic navigation in catheter ablation for paroxysmal atrial fibrillation: midterm efficacy and predictors of postablation arrhythmia recurrences. J Cardiovasc Electrophysiol 2011; 22 (05) 534-540
  • 26 Shaikh ZA, Eilenberg MF, Cohen TJ. The Amigo™ remote catheter system: from concept to bedside. J Innov Card Rhythm Manag 2017; 8 (08) 2795-2802
  • 27 Wutzler A, Wolber T, Parwani AS. et al. Robotic ablation of atrial fibrillation with a new remote catheter system. J Interv Card Electrophysiol 2014; 40 (03) 215-219
  • 28 Song H, Yi B, Won J, Woo J. Learning-based catheter and guidewire-driven autonomous vascular intervention robotic system for reduced repulsive force. J Comput Eng 2022; 9: 1549-1564
  • 29 Anvari M, McKinley C, Stein H. Establishment of the world's first telerobotic remote surgical service: for provision of advanced laparoscopic surgery in a rural community. Ann Surg 2005; 241 (03) 460-464
  • 30 Patel TM, Shah SC, Pancholy SB. Long distance tele-robotic-assisted percutaneous coronary intervention: a report of first-in-human experience. EClinicalMedicine 2019; 14: 53-58
  • 31 Starikova N, Räty S, Strbian D. et al. Endovascular thrombectomy for anterior circulation large vessel occlusion stroke: an evolution of trials. Semin Neurol 2023; 43 (03) 397-407
  • 32 Räty S, Nguyen T, Nagel S. et al. What is the evidence for endovascular thrombectomy in posterior circulation stroke?. Semin Neurol 2023; 43 (03) 345-355
  • 33 Huo X, Sun D. Raynald, et al. Endovascular treatment for acute large vessel due to underlying intracranial atherosclerotic disease. Semin Neurol 2023; 43: 337-344
  • 34 Eskey CJ, Meyers PM, Nguyen TN. et al. American Heart Association Council on Cardiovascular Radiology and Intervention and Stroke Council. Indications for the performance of intracranial endovascular neurointerventional procedures: a scientific statement from the American Heart Association. Circulation 2018; 137 (21) e661-e689
  • 35 Gopesh T, Wen JH, Santiago-Dieppa D. et al. Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders. Sci Robot 2021; 6 (57) eabf0601
  • 36 Wang Q, Chan KF, Schweizer K. et al. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci Adv 2021; 7: 5914-5940
  • 37 Zaidi SF, Castonguay AC, Jumaa MA. et al. Intraarterial thrombolysis as rescue therapy for large vessel occlusions. Stroke 2019; 50 (04) 1003-1006
  • 38 Nelson BJ, Kaliakatsos IK, Abbott JJ. Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 2010; 12: 55-85
  • 39 Chautems C, Zeydan B, Charreyron S, Chatzipirpiridis G, Pané S, Nelson BJ. Magnetically powered microrobots: a medical revolution underway?. Eur J Cardiothorac Surg 2017; 51 (03) 405-407
  • 40 Riga CV, Bicknell CD, Rolls A, Cheshire NJ, Hamady MS. Robot-assisted fenestrated endovascular aneurysm repair (FEVAR) using the Magellan system. J Vasc Interv Radiol 2013; 24 (02) 191-196