RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2025; 36(07): 894-898
DOI: 10.1055/s-0043-1773495
DOI: 10.1055/s-0043-1773495
letter
Coupling Reaction of Aryl Halides with Orthoformate Ester
This work was supported by the Grants-in-Aid for Scientific Research (No. 20H02737) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. T.K. acknowledges the Masuyakinen Basic Research Foundation, the Murata Science Foundation, the Toshiaki Ogasawara Memorial Foundation, the Kumagai Science and Technology Foundation, and the Iketani Science and Technology Foundation.

Abstract
Herein, we report that orthoformate ester and N,N-dimethylformamide di-tert-butyl acetal can be a source of alkoxy radicals. We have developed a coupling reaction with aryl halides as a way of utilizing them. This has led to the synthesis of aromatic ethers with tertiary alkoxy groups, which are generally considered difficult to synthesize.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773495.
- Supporting Information
Publikationsverlauf
Eingereicht: 24. September 2024
Angenommen nach Revision: 08. Oktober 2024
Artikel online veröffentlicht:
18. November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Majetich G, Wheless K. Tetrahedron 1995; 51: 7095
- 1b Hartung J. Eur. J. Org. Chem. 2001; 4: 619
- 1c Walling C, Wagner PJ. J. Am. Chem. Soc. 1964; 86: 3368
- 1d Salamone M, Bietti M. Acc. Chem. Res. 2015; 48: 2895
- 1e Wu X, Wang M, Huna L, Wang D, Wang J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 1640
- 2a Barthelemy A, Tuccio B, Maginer E, Dagousset G. Angew. Chem. Int. Ed. 2018; 57: 13790
- 2b Banoun C, Bourdreux F, Magnier E, Dagousset G. Org. Lett. 2021; 23: 8926
- 2c Barthelemy A, Tuccio B, Madier E, Dagousset G. Synlett 2019; 30: 1489
- 3 Yayla HG, Wang H, Tarantino KT, Orbe HS, Knowles RR. J. Am. Chem. Soc. 2016; 138: 10794
- 4 Guo J, Hu A, Chen Y, Sun J, Tang H, Zuo Z. Angew. Chem. Int. Ed. 2016; 55: 15319
- 5a Chang L, An Q, Duan L, Feng K, Zuo Z. Chem. Rev. 2022; 122: 2429
- 5b Tsui E, Wang H, Knowls RR. Chem. Sci. 2020; 11: 11124
- 5c Kim I, Park B, Kang G, Kim J, Lee H, Baik M, Hong S. Angew. Chem. Int. Ed. 2018; 57: 15517
- 6a Jiang B, Xu B, Wang M, Li Z, Liu D, Zhang S. Asian J. Org. Chem. 2018; 7: 977
- 6b Rhee H, Kim JY. Tetrahedron Lett. 1998; 39: 1365
- 6c Kariofillis SK, Shields BJ, Tekle-Smith MA, Zacuto MJ, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7683
- 7 For additional information and control experiments, see the Supporting Information.
- 8 Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature 2012; 492: 234
- 9a Parasram M, Shields BJ, Ahmad O, Knauber T, Doyle AG. ACS Catal. 2020; 10: 5821
- 9b Luo J, Zhang J. ACS Catal. 2016; 6: 873
- 9c Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
- 10a Jeffrey JL, Terrett JA, MacMillan DW. C. Science 2015; 349: 1532
- 10b Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2017; 139: 11353
- 11a Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
- 11b Huang L, Zhu C, Yi L, Yue H, Kancherla R, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 457
- 12a Nishino S, Sudo K, Kurahashi T. Org. Lett. 2024; 26: 4049
- 12b Nishino S, Kurahashi T. Chem. Lett. 2024; 53: upae088
- 12c Nishino S, Kurahashi T. Chem. Lett. 2024; 53: upae111
- 12d Du X, Cheng-Sánchez I, Nevado C. J. Am. Chem. Soc. 2023; 145: 12532
- 12e Lv P, Wang A, Xie X, Chen Y, Liu Y. Org. Lett. 2023; 25: 3319
- 12f Huang L, Zhu C, Yi L, Yue H, Kancherla R, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 457
- 13 Noble A, McCarver J, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 624
- 14 Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
- 15 For additional information and control experiments, see the Supporting Information.
- 16 For additional information and control experiments, see the Supporting Information.
- 17 Khramtsov V, Berliner LJ, Clanton TL. Free Radical Biol. Med. 2001; 30: 1099
- 18 Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DW. C. Nature 2015; 524: 330
- 19 Cavedon C, Madani A, Seeberger PH, Pieber B. Org. Lett. 2019; 21: 5331
- 20 Kibriya G, Samanta S, Luna S, Mondal S, Halra A. J. Org. Chem. 2017; 82: 13722
- 21 Luo Z, Lu C, Histand G, Lin D. J. Org. Chem. 2022; 87: 11558
- 22 General Procedure for 3a In the glovebox, a 5 mL glass vial, equipped with a Teflon stir bar, was charged with NiBr2·glyme (15.5 mg, 50.0 μmol, 0.100 equiv), dtbbpy (20.2 mg, 75.0 μmol, 0.150 equiv), and trimethyl orthoformate (5.00 mL). The nickel catalyst solution was stirred for 20 min, forming a green suspension. To a separate 5 mL glass vial, equipped with a Teflon stir bar, was added 4CzIPN (11.8 mg, 15.0 μmol, 0.0300 equiv) and trimethyl orthoformate (3.00 mL). The photoredox catalyst solution was stirred for 10 min. Meanwhile, a 12 mL borosilicate reaction tube with a Teflon stir bar was charged with methyl 4-bromobenzoate (215 mg, 0.500 mmol), K3PO4 (212 mg, 1.00 mmol, 2.00 equiv), quinuclidine (5.50 mg, 50.0 μmol, 0.100 equiv), and trimethyl orthoformate (2.00 mL). The photocatalyst solution and nickel catalyst solutions were then added sequentially (total solvent volume: 10.0 mL, 50.0 μM). The reaction tube was capped with a Teflon septum cap, sealed with electrical tape, and removed from the glovebox. The reaction was stirred for 20 h while illuminating with 427 nm Kessil LED lump placed horizontally at 2 cm distances on either side of the reaction tube (Scheme S1 and S2). Upon completion, the reaction mixture was filtered through Celite and washed with dichloromethane. The residue was purified by column chromatography (20 cm × 300 cm, SiO2 60g, hexane/ethyl acetate = 10/1). Compound 3a: yield 77%, colorless solid. 1H NMR (400 MHz, CDCl3): δ 7.99–8.01 (d, J = 8.93 Hz, 2 H), 6.91–6.93 (d, J = 8.93 Hz, 2 H) 3.89 (s, 3 H), 3.86 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 167.0, 163.4, 131.7, 122.7, 113.7, 55.5, 52.0 ppm. HRMS (ESI): m/z [M + H]+ calcd for C9H11O3: 167.0708; found: 167.0692.
Already reported methods for the formation of alkoxy radicals, see:
Methyl esterification of aldehydes with trimethyl orthoformate, see:
Methyl esterification of aldehydes with trimethyl orthoformate, see:
Trimethyl orthoformate is used as a methyl radical source, see: