Subscribe to RSS
DOI: 10.1055/s-0043-1775365
A π-Stacked Highly Stable, Insensitive, Energy-Containing Material with a Useful Planar Structure
We are grateful to the National Natural Science Foundation of China (22375095) for funding this work.
Abstract
π-Stacking is common in materials, but different π–π stacking modes remarkably affect the properties and performances of materials. In particular, weak interactions, π-stacking and hydrogen bonding often have a significant impact on the stability and sensitivity of high-energetic compounds. A fused [5,7,5]-tricyclic energetic compound with a conjugated structure has been designed and synthesized. 4H-[1,2,5]Oxadiazolo[3,4-e][1,2,4]triazolo[3,4-g][1,2,4]triazepin-8-amine is obtained in 48% yield from 3-amino-4-carboxy-1,2,5-oxadiazole through an efficient two-step reaction. Owing to its layered planar structure and weak π interactions between layers, 4H-[1,2,5]oxadiazolo[3,4-e][1,2,4]triazolo[3,4-g][1,2,4]triazepin-8-amine exhibits high thermal stability (T d = 318 °C), low sensitivity (IS = 40 J, FS = 360 N), and relatively excellent detonation performance (D = 7059 ms–1, P = 20.2 GPa). This detonation performance is superior to that of the conventional explosive TNT. The developed procedure provides a new method for the synthesis of fused ring compounds.
Key words
energetic materials - explosives - nitrogen heterocycles - π-stacking - detonation - planar structureSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775365.
- Supporting Information
Publication History
Received: 12 December 2023
Accepted after revision: 14 May 2024
Article published online:
02 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Feng Y, Deng M, Song S, Chen S, Zhang Q, Shreeve JM. Engineering 2020; 6: 1006
- 1b Hermann TS, Karaghiosoff K, Klapötke TM, Stierstorfer J. Chem. Eur. J. 2017; 23: 11984
- 2a Sun Q, Li X, Lin Q, Lu M. Org. Biomol. Chem. 2018; 43: 7987
- 2b Zhang J, Shreeve JM. J. Phys. Chem. A. 2015; 119: 12781
- 2c Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HM. B, Rathbone DA, Strand SE, Bruce NC. Nat. Biotechnol. 2006; 24: 216
- 2d Wang Y, Liu Y, Song S, Yang Z, Qi X, Wang K, Liu Y, Zhang Q, Tian Y. Nat. Commun. 2018; 9: 2444
- 2e Bayat Y, Eghdamtalab M, Zeynali V. J. Energetic Mater. 2010; 28: 273
- 2f Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J. J. Mater. Chem. 2012; 22: 20418
- 3a Yu Q, Yin P, Zhang J, He C, Imler GH, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2017; 139: 8779
- 3b Haubenreisser S, Wöste TH, Martínez C, Ishihara K, Muñiz K. Angew. Chem. Int. Ed. 2016; 55: 1
- 3c Tang Y, Zhang J, Mitchell LA, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2015; 137: 15984
- 4a Wang Q, Shao Y, Lu M. Cryst. Growth Des. 2019; 19: 839
- 4b Zhang C, Wang X, Huang H. J. Am. Chem. Soc. 2008; 130: 8359
- 4c Zhang J, Mitchell LA, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2015; 137: 10532
- 4d Zhang J, Jin B, Peng R, Niu C, Xiao L, Guo Z, Zhang Q. Dalton Trans. 2019; 48: 11848
- 4e Geng W.-J, Ma Q, Chen Y, Yang W, Jia Y.-F, Li J.-S, Zhang Z.-Q, Fan G.-J, Wang S.-M. Cryst. Growth Des. 2020; 20: 2106
- 4f Dippold AA, Klapötke TM. J. Am. Chem. Soc. 2013; 135: 9931
- 4g Tang Y, Huang W, Imler GH, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2020; 142: 7153
- 4h Fei T, Lai Q, Cai J, Zhang J, He C, Pang S. Cryst. Growth Des. 2022; 22: 1943
- 5 Lei C, Tang J, Zhang Q, Yang H, Cheng G. Org. Lett. 2023; 25: 2461
- 6a Cheng Y, Chen X, Yang N, Zhang Y, Ma H, Guo Z. CrystEngComm 2021; 23: 1953
- 6b Bu R, Xiong Y, Zhang C. Cryst. Growth Des. 2020; 20: 2824
- 6c Yin P, Mitchell LA, Parrish DA, Shreeve JM. Angew. Chem. Int. Ed. 2016; 55: 14409
- 7 Wang Y, Ye J, Yang N, Ma H, Zhang Y, Guo Z. CrystEngComm 2021; 23: 7635
- 8a Zhang J, Zhang Q, Vo TT, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2015; 137: 1697
- 8b Zhang J, Jin B, Song Y, Hao W, Huang J, Guo J, Huang T, Guo Z, Peng R. Langmuir 2021; 37: 7118
- 8c Lei C, Yang H, Zhang Q, Cheng G. Dalton Trans. 2021; 50: 14462
- 8d Chand D, Parrish DA, Shreeve JM. J. Mater. Chem. A 2013; 1: 15383
- 9 Cheng B, Yang F, Zhang J, Zhang L, Zhao P, Lin Q. Cryst. Growth Des. 2023; 23: 1466
- 10 Caution! The target compounds in this article are energetic materials with explosive properties. All synthetic manipulations must be carried out using appropriate equipment (fume hood, safety shield) and protective gear (lab coat, goggles and gloves). Compounds should be synthesized on a small scale and mechanical actions involving scratching or scraping must be avoided.
- 11 Willer RL, Storey RF, Frisch M, Deschamps JR. J. Heterocycl. Chem. 2012; 49: 227
- 12 3-Amino-4-(4,5-diamino-1,2,4-triazol-3-yl)-furazan (2) Phosphorus pentoxide (10 g, 70.4 mmol) was slowly added to phosphoric acid (85 wt%, 30 g, 260 mmol) and the mixture was then heated to 50 °C with stirring. A mixture of 3-amino-4-carboxy furazan (3.87 g, 30 mmol) and diaminoguanidine monohydrochloride (6.15 g, 49 mmol) was added to the preheated solution. After the addition was complete, the mixture was heated to 120 °C and the evolution of gaseous HCl was observed. The mixture was kept at 120 °C for 5 h and then cooled to room temperature. Ice water (150 mL) was added to the cooled reaction mixture and a white precipitate was formed. The mixture was made basic (pH 8) using conc. NaOH solution and the precipitate was filtered, washed repeatedly with water and air-dried to obtain crude product 2. Yield: 3.4 g (62%). IR (KBr): 3436, 3352, 1690, 1608, 1404, 1380, 1340, 1183, 1045, 990, 907, 769, 688, 581 cm–1. 1H NMR (500 MHz, DMSO-d 6): δ = 5.91 (2 H, s), 6.26 (2 H, s), 6.58 (2 H, s). 13C NMR (125.72 MHz, DMSO-d 6): δ = 157.18, 154.98, 140.27, 136.58. Anal. Calcd for C4H6N8O (182.15): C, 26.38; H, 3.33; N, 61.52. Found: C, 26.46; H, 3.28; N, 61.31.
- 13 4H-[1,2,5]Oxadiazolo[3,4-e][1,2,4]triazolo[3,4-g][1,2,4]triazepin-8-amine (3) Compound 2 (0.99 g, 5.4 mmol) was dissolved in acetonitrile (20 mL), the solution was cooled to 0 °C and TCCA (2.325 g, 10 mmol) was added dropwise. The reaction mixture was further stirred at 0 °C for 30 min. The solution was neutralized with solid Na2CO3 and then filtered to remove insoluble solids. The filter cake was washed several times with acetonitrile and the combined filtrates were concentrated by vacuum evaporation. The crude product obtained after removal of the solvent under vacuum was purified by silica gel chromatography (eluent: EtOAc/petroleum ether = 1:1) to give product 3 as a light yellow solid. Yield: 0.65 g (48%). T d = 318 ℃. IR (KBr): 3202, 3049, 2921, 2832, 1693, 1455, 1413, 1390, 1051, 977, 845, 786, 760, 739, 692 cm–1. 1H NMR (500 MHz, DMSO-d 6): δ = 11.15 (s, 1 H), 4.30 (br s, 1 H), 1.29 (s, 2 H). 13C NMR (125.72 MHz, DMSO-d 6): δ = 155.72, 153.1, 140.24, 135.06, 40.2. Anal. Calcd for C5H4N8O: C, 31.26; H, 2.10; N, 58.32, O, 8.33. Found: C, 31.06; H, 2.40; N, 58.02; O, 8.43.
- 14 Zhang C, Xue X, Cao Y, Zhou J, Zhang A, Li H, Zhou Y, Xu R, Gao T. CrystEngComm 2014; 16: 5905
- 15 Deng M, Feng Y, Zhang W, Qi X, Zhang Q. Nat. Commun. 2019; 10: 1339
- 16 Dai C, Chen J, Tang J, Cheng G, Yang H. New J. Chem. 2021; 45: 17960
- 17 Gao H, Shreeve JM. RSC Adv. 2016; 6: 56271
- 18 Sućeska M. EXPLO5 V6.05.04. Brodarski Institute; Zagreb, Croatia: 2020
- 19 Spackman MA, McKinnon JJ. CrystEngComm 2002; 4: 378
- 20 Spackman MA, Jayatilaka D. CrystEngComm 2009; 11: 19
- 21 Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W. J. Am. Chem. Soc. 2010; 132: 6498
- 22 Lu T, Chen F. J. Comput. Chem. 2012; 33: 580
- 23 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian Inc. Wallingford (CT, USA): 2009
- 24 Zhang J, Mitchell LA, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2015; 137: 10532