Subscribe to RSS

DOI: 10.1055/s-0043-1775380
Ketocalixarenes: Versatile yet still Unexplored Macrocycles
This work was supported by the Israel Science Foundation (ISF), Grant No. 262/20.

This paper is dedicated to the memory of our collaborator and friend Dr. Norbert Itzhak
Abstract
Ketocalix[n]arenes can be prepared via oxidation of the methylene groups of protected calix[n]arenes. The presence of carbonyl groups at the bridges alters the preferred conformation and reactivity of the macrocycle and provides an entry point (via nucleophilic additions reactions) to a wide array of methylene-substituted derivatives as well as calix[n]radialenes.
1 Introduction
2 Synthesis of Ketocalix[n]arenes
2.1 Ketocalix[4]arene Derivatives
2.2 Systems Possessing both Carbonyl and Bromomethane Bridges
2.3 Pentaoxoketocalix[5]arene and Hexaoxoketocalix[6]arene Derivatives
2.4 Monooxo- and Dioxoketocalix[6]arenes
3 Conformation of Ketocalixarenes
4 Reactions of Ketocalixarenes
4.1 Alkylation of the OH Groups
4.2 Intramolecular Aromatic Nucleophilic Substitution
4.3 Reduction of the Carbonyl Groups
4.4 Reaction of 5c with PhLi
4.5 Reaction with tert-Butyllithium
5 From Ketocalix[n]arenes to Calix[n]radialenes and Calix[n]rotanes
6 Summary and Outlook
Publication History
Received: 22 May 2024
Accepted after revision: 10 June 2024
Article published online:
12 August 2024
© 2024. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Calixarenes, a Versatile Class of Macrocyclic Compounds. Vicens J, Böhmer V. Kluwer; Dordrecht: 1991
- 1b Shinkai S. Tetrahedron 1993; 49: 8933
- 1c Böhmer V. Angew. Chem., Int. Ed. Engl. 1995; 34: 713
- 1d Gutsche CD. Aldrichimica Acta 1995; 28: 1
- 1e Pochini A, Ungaro R. In Comprehensive Supramolecular Chemistry, Vol. 2. Vögtle F. Pergamon Press; Oxford: 1996: 103
- 1f Gutsche CD. Calixarenes Revisited . Royal Society of Chemistry; Cambridge: 1998
- 1g Calixarenes 2001 . Asfari Z, Böhmer V, Harrowfield J, Vicens J. Kluwer Academic Publishers; Dordrecht: 2001
- 1h Böhmer V. In The Chemistry of Phenols, Chap. 19. Rappoport Z. Wiley; Chichester: 2003
- 1i Gutsche CD. Calixarenes. An Introduction, 2nd ed. Royal Society of Chemistry; Cambridge: 2008
- 1j Calixarenes and Beyond . Neri P, Sessler JL, Wang MX. Springer; Switzerland: 2016
- 2a Rudkevich DM. Chem. Eur. J. 2000; 6: 2679 For recent studies on the hydrogen bonding of hydroxycalix[n]arenes, see for example
- 2b Furer VL, Potapova LI, Vatsour IM, Kovalev VV, Shokova EA, Kovalenko VI. J. Inclusion Phenom. Macrocyclic Chem. 2019; 95: 63
- 2c Furer VL, Vandyukov AE, Khamatgalimov AR, Kleshnina SR, Solovieva SE, Antipin IS, Kovalenko VI. J. Mol. Struct. 2019; 1195: 403
- 3a Lang J, Deckerová V, Czernek J, Lhoták P. J. Chem. Phys. 2005; 122: 044506-1 See also
- 3b Lang J, Vágnerová K, Czernek J, Lhoták P. Supramol. Chem. 2006; 18: 371
- 4 Israeli G, Shalev O, Biali SE. Eur. J. Org. Chem. 2020; 1968
- 5 Gutsche CD, Bauer LJ. J. Am. Chem. Soc. 1985; 107: 6052
- 6a In this Account calixarenes where only part of the methylene bridges has been replaced by carbonyl group
- 6b will also be referred as ‘ketocalixarenes’.
- 7 For a review on calixarene analogues where oxygen atoms replace the methylene bridges (i.e., ‘oxacalixarenes’), see: Hudson, R.; Katz, J. L. in ref. 1j, chap. 15.
- 8a Sliwa W, Deska M. ARKIVOC 2012; 173
- 8b Deska M, Dondela B, Sliwa W. ARKIVOC 2015; 29
- 8c Biali SE. in ref. 1j, chap. 4.
- 9 Molecular belts consisting of resorcinarenes with bridging alkylmethyl and carbonyl groups have been reported, see: Zhang Y, Tong S, Wang M.-X. Angew. Chem. Int. Ed. 2020; 59: 18151
- 10a Aleksiuk O, Grynszpan F, Litwak AM, Biali SE. New J. Chem. 1996; 20: 473
- 10b Kortus D, Eigner V, Lhoták P. New J. Chem. 2021; 45: 8563
- 11 Neri P, Bottino A, Cunsolo F, Piattelli M, Gavuzzo E. Angew. Chem. Int. Ed. 1998; 37: 166
- 12a Reddy PA, Gutsche CD. J. Org. Chem. 1993; 58: 3245
- 12b Lee M.-D, Yang K.-M, Tsoo C.-Y, Shu C.-M, Lin L.-G. Tetrahedron 2001; 57: 8095
- 12c Yang K.-M, Lee M.-D, Chen R.-F, Chen Y.-L, Lin L.-G. Tetrahedron 2001; 57: 8101
- 13 Ninagawa A, Cho K, Matsuda H. Makromol. Chem. 1985; 186: 1379
- 14 Ito K, Izawa S, Ohba T, Ohba Y, Sone T. Tetrahedron Lett. 1996; 37: 5959
- 15 Görmar G, Seiffarth K, Schultz M, Zimmerman J, Flämig G. Macromol. Chem. 1990; 191: 81
- 16 Matsuda K, Nakamura N, Takahashi K, Inoue K, Koga N, Iwamura H. J. Am. Chem. Soc. 1995; 117: 5550
- 17 Fischer C, Lin G, Seichter W, Weber E. Tetrahedron Lett. 2013; 54: 2187
- 18 He C, Zhang X, Huang R, Pan J, Li J, Ling X, Xiong Y, Zhu X. Tetrahedron Lett. 2014; 55: 4458
- 19 Itzhak N, Biali SE. Eur. J. Org. Chem. 2015; 3221
- 20 Akabori S, Sannohe H, Habata Y, Mukoyama Y, Ishii T. J. Chem. Soc., Chem. Commun. 1996; 1467
- 21 Jaime C, de Mendoza J, Prados P, Nieto PM, Sanchez C. J. Org. Chem. 1991; 56: 3372
- 22 Seri N, Thondorf I, Biali SE. J. Org. Chem. 2004; 69: 4774
- 23 Shalev O, Biali SE. J. Org. Chem. 2014; 79: 8584
- 24 Kuno L, Biali SE. J. Org. Chem. 2011; 76: 3664
- 25 Poms D, Itzhak N, Kuno L, Biali SE. J. Org. Chem. 2014; 79: 538
- 26 Itzhak N, Biali SE. Synthesis 2018; 50: 3897
- 27 Kogan K, Biali SE. Org. Lett. 2007; 9: 2393
- 28 Aleksiuk O, Biali SE. J. Org. Chem. 1996; 61: 5670
- 29 Shalev O, Biali SE. Org. Lett. 2018; 20: 2324
- 30 Shalev O, Biali SE. Chem. Eur. J. 2019; 25: 10214
- 31 Shalev O, Biali SE. Eur. J. Org. Chem. 2020; 749
- 32 Seri N, Simaan S, Botoshansky M, Kaftory M, Biali SE. J. Org. Chem. 2003; 68: 7140
- 33a Mislin G, Graf E, Hosseini MW, De Cian A, Fischer J. Tetrahedron Lett. 1999; 40: 1129
- 33b Mislin G, Graf E, Hosseini MW, De Cian A, Fischer J. Chem. Commun. 1998; 1345
- 34 Seri N, Biali SE. J. Org. Chem. 2005; 70: 5278
- 35a Bottino F, Giunta L, Pappalardo S. J. Org. Chem. 1989; 54: 5407
- 35b Brunink JA. J, Verboom P, Verboom W, Engbersen JF. J, Harkema S, Reinhoudt DN. Recl. Trav. Chim. Pays-Bas 1992; 111: 511
- 35c Groenen LC, Ruel BH. M, Casnati A, Timmerman W, Harkema S, Pochini A, Ungaro R, Reinhoudt DN. Tetrahedron Lett. 1991; 32: 2675
- 35d Araki K, Iwamoto K, Shigematsu S, Shinkai S. Chem. Lett. 1992; 1095
- 35e Pappalardo S. New J. Chem. 1996; 20: 465
- 35f Ferguson G, Gallagher JF, Giunta L, Neri P, Pappalardo S, Parisi M. J. Org. Chem. 1994; 59: 42
- 36 For strained calix[4]arenes incorporating a fluorene subunit as part of the rings, see: Holub J, Eigner V, Vrzal L, Dvořáková H, Lhoták P. Chem. Commun. 2013; 49: 2798
- 37 Itzhak N, Biali SE. Synthesis 2015; 47: 1678
- 38 Kuno L, Seri N, Biali SE. Org. Lett. 2007; 9: 1577
- 39 Kuno L, Biali SE. J. Org. Chem. 2009; 74: 48
- 40a Anet FA. L, Basus VJ, Hewett AP. W, Saunders M. J. Am. Chem. Soc. 1980; 102: 3945
- 40b Siehl H.-U. Adv. Phys. Org. Chem. 1987; 23: 63
- 41 Kuno L, Biali SE. Org. Lett. 2009; 11: 3662
- 42 Shalev O, Biali SE. Org. Lett. 2018; 20: 3390
- 43a Fitjer L. Angew. Chem., Int. Ed. Engl. 1976; 15: 763
- 43b Giersig M, Wehle D, Fitjer L, Schormann N, Clegg W. Chem. Ber. 1988; 121: 525
- 43c Fitjer L, Steeneck C, Gaini-Rahimi S, Schröder U, Justus K, Puder P, Dittmer M, Hassler C, Weiser J, Noltemeyer M, Teichert M. J. Am. Chem. Soc. 1998; 120: 317
- 43d Fitjer L, Klages U, Kühn W, Stephenson DS, Binsch GNoltemeyer M, Egert E, Sheldrick GM. Tetrahedron 1984; 40: 4337
For reviews on calixarenes, see:
For a review on the intramolecular hydrogen bonding in calixarenes, see:
For reviews on calixarenes modified at the methylene bridges, see:
For a recent study on spirodienone derivatives of 2,14, dithiacalix[4]arene, see
A similar conformation was also observed in thiacalixarenes with bridges oxidized to sulfonyl groups:
For a review, see