Subscribe to RSS
DOI: 10.1055/s-0043-1775394
Recent Trends in Triarylborane Chemistry: Diversification of Structures and Reactivity via meta-Substitution of the Aryl Groups
This work was supported by the Japan Science and Technology Corporation (JST) FOREST Program (JPMJFR2222), Japan Society for the Promotion of Science Grants-in-Aid for Transformative Research Area (A) Digitalization-driven Transformative Organic Synthesis (JSPS KAKENHI grant 22H05363), the Environment Research and Technology Development Fund (JPMEERF20211R01) of the Environmental Restoration and Conservation Agency of Japan, and a Japan Society for the Promotion of Science fellowship.
Abstract
This Short Review summarizes the synthesis and applications of triarylboranes (BAr3), including both homoleptic and heteroleptic species, with a focus on the modification of their electronic and structural properties via the introduction of meta-substituents with respect to the B atoms to their Ar groups. This approach constitutes a complementary alternative to conventional strategies for the design of BAr3, which are usually based on a modification of their ortho- and/or para-substituents. An initial analysis revealed that CH3 and F are the most common meta-substituents in hitherto reported BAr3 (apart from the H atom). Thus, an extensive exploration of other substituents, e.g., heavier halogens, longer or functionalized alkyl groups, and aryl groups, will increase our knowledge of the structure and reactivity of BAr3 and eventually lead to a range of new applications.
1 Introduction
2 Scope of this Review
2.1 The Electronic and Steric Influence of meta-Substituents
2.2 Molecular Transformations Mediated by meta-Substituted Boranes
2.3 Other Examples of meta-Functionalization of BAr3
3 Conclusions and Perspectives
Publication History
Received: 11 June 2024
Accepted after revision: 03 July 2024
Article published online:
19 August 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Carden JL, Dasgupta A, Melen RL. Chem. Soc. Rev. 2020; 49: 1706
- 1b Berger SM, Ferger M, Marder TB. Chem. Eur. J. 2021; 27: 7043
- 1c Berionni G. Chem. Synth. 2021; 1: 10 http://dx.doi.org/10.20517/cs.2021.11
- 1d He J, Rauch F, Finze M, Marder TB. Chem. Sci. 2021; 12: 128
- 1e Lawson JR, Melen RL. Inorg. Chem. 2017; 56: 8627
- 1f Nori V, Pesciaioli F, Sinibaldi A, Giorgianni G, Carlone A. Catalysts 2022; 12: 5
- 2a Jupp AR, Stephan DW. Trends Chem. 2019; 1: 35
- 2b Hoshimoto Y, Ogoshi S. ACS Catal. 2019; 9: 5439
- 2c Scott DJ, Fuchter MJ, Ashley AE. Chem. Soc. Rev. 2017; 46: 5689
- 2d Fasano V, Ingleson MJ. Synthesis 2018; 50: 1783
- 2e Paradies J. Acc. Chem. Res. 2023; 56: 821
- 2f Stephan DW, Erker G. Angew. Chem. Int. Ed. 2015; 54: 6400
- 3a Erdmann P, Greb L. Angew. Chem. Int. Ed. 2022; 61: e202114550
- 3b Greb L. Chem. Eur. J. 2018; 24: 17881
- 3c Rodrigues Silva D, de Azevedo Santos L, Freitas MP, Fonseca Guerra C, Hamlin TA. Chem. Asian J. 2020; 15: 4043
- 3d Muller P. Pure Appl. Chem. 1994; 66: 1077
- 4 Sivaev IB, Bregadze VI. Coord. Chem. Rev. 2014; 270–271: 75
- 5a Zhang Y. Inorg. Chem. 1982; 21: 3889
- 5b Brown ID, Skowron A. J. Am. Chem. Soc. 1990; 112: 3401
- 5c Chattaraj PK, Sarkar U, Roy DR. Chem. Rev. 2006; 106: 2065
- 5d Jupp AR, Johnstone TC, Stephan DW. Dalton Trans. 2018; 47: 7029
- 6 Chase PA, Henderson LD, Piers WE, Parvez M, Clegg W, Elsegood MR. J. Organometallics 2006; 25: 349
- 7 Dorkó É, Szabó M, Kótai B, Pápai I, Domján A, Soós T. Angew. Chem. Int. Ed. 2017; 56: 9512
- 8 Hashimoto T, Asada T, Ogoshi S, Hoshimoto Y. Sci. Adv. 2022; 8: eade0189
- 9 Sakuraba M, Morishita T, Hashimoto T, Ogoshi S, Hoshimoto Y. Synlett 2023; 34: 2187
- 10 Sakuraba M, Ogoshi S, Hoshimoto Y. Tetrahedron Chem. 2024; 9: 100059
- 11 Dorkó É, Kótai B, Földes T, Gyömöre Á, Pápai I, Soós T. J. Organomet. Chem. 2017; 847: 258
- 12 Hudson ZM, Wang S. Dalton Trans. 2011; 40: 7805
- 13a Hirai M, Tanaka N, Sakai M, Yamaguchi S. Chem. Rev. 2019; 119: 8291
- 13b Kothavale SS, Lee JY. Adv. Opt. Mater. 2020; 8: 2000922
- 14 Su X, Bartholome TA, Tidwell JR, Pujol A, Yruegas S, Martinez JJ, Martin CD. Chem. Rev. 2021; 121: 4147
- 15a Herrington TJ, Thom AJ. W, White AJ. P, Ashley AE. Dalton Trans. 2012; 41: 9019
- 15b Kolychev EL, Bennenberg T, Freytag M, Daniliuc CG, Jones PG, Tamm M. Chem. Eur. J. 2012; 18: 16938
- 15c Böhrer H, Trapp N, Himmel D, Schleep M, Krossing I. Dalton Trans. 2015; 44: 7489
- 16a Konze WV, Scott BL, Kubas GJ. Chem. Commun. 1999; 1807
- 16b Krossing I, Raabe I. Chem. Eur. J. 2004; 10: 5017
- 16c Santi R, Romano AM, Sommazzi A, Grande M, Bianchini C, Mantovani G. J. Mol. Catal. A: Chem. 2005; 229: 191
- 16d Swarnakar AK, Ferguson MJ, McDonald R, Rivard E. Dalton Trans. 2016; 45: 6071
- 16e Niu H, Mangan RJ, Protchenko AV, Phillips N, Unkrig W, Friedmann C, Kolychev EL, Tirfoin R, Hicks J, Aldridge S. Dalton Trans. 2018; 47: 7445
- 16f Buss JA, VanderVelde DG, Agapie T. J. Am. Chem. Soc. 2018; 140: 10121
- 16g Abbenseth J, Bete SC, Finger M, Volkmann C, Würtele C, Schneider S. Organometallics 2018; 37: 802
- 17a Blagg RJ, Lawrence EJ, Resner K, Oganesyan VS, Herrington TJ, Ashley AE, Wildgoose GG. Dalton Trans. 2016; 45: 6023
- 17b Heiden ZM, Lathem AP. Organometallics 2015; 34: 1818
- 17c Bentley JN, Elgadi SA, Gaffen JR, Demay-Drouhard P, Baumgartner T, Caputo CB. Organometallics 2020; 39: 3645
- 17d Blagg RJ, Simmons TR, Hatton GR, Courtney JM, Bennett EL, Lawrence EJ, Wildgoose GG. Dalton Trans. 2016; 45: 6032
- 18a Bender TA, Payne PR, Gagné MR. Nat. Chem. 2018; 10: 85
- 18b Seo Y, Lowe JM, Gagné MR. ACS Catal. 2019; 9: 6648
- 18c Seo Y, Gudz A, Lowe JM, Gagné MR. Tetrahedron 2019; 75: 130712
- 18d Clarke JJ, Basemann K, Romano N, Lee SJ, Gagné MR. Org. Lett. 2022; 24: 4135
- 18e Hamasaka G, Tsuji H, Uozumi Y. Synlett 2015; 26: 2037
- 18f Yin Q, Kemper S, Klare HF. T, Oestreich M. Chem. Eur. J. 2016; 22: 13840
- 18g Yepes D, Pérez P, Jaque P, Fernández I. Org. Chem. Front. 2017; 4: 1390
- 18h Yin Q, Soltani Y, Melen RL, Oestreich M. Organometallics 2017; 36: 2381
- 18i Hamasaka G, Tsuji H, Ehara M, Uozumi Y. RSC Adv. 2019; 9: 10201
- 18j Zhang Z.-Y, Ren J, Zhang M, Xu X.-F, Wang X.-C. Chin. J. Chem. 2021; 39: 1641
- 18k Zhang M, Zhou Q, Luo H, Tang Z.-L, Xu X, Wang X.-C. Angew. Chem. Int. Ed. 2023; 62: e202216894
- 18l Zhu L, Gaire S, Ziegler CJ, Jia L. ChemCatChem 2022; 14: e202200974
- 18m Liu Z, He J.-H, Zhang M, Shi Z.-J, Tang H, Zhou X.-Y, Tian J.-J, Wang X.-C. J. Am. Chem. Soc. 2022; 144: 4810
- 19a Swarnakar AK, Hering-Junghans C, Nagata K, Ferguson MJ, McDonald R, Tokitoh N, Rivard E. Angew. Chem. Int. Ed. 2015; 54: 10666
- 19b Swarnakar AK, Hering-Junghans C, Ferguson MJ, McDonald R, Rivard E. Chem. Eur. J. 2017; 23: 8628
- 19c Swarnakar AK, Hering-Junghans C, Ferguson MJ, McDonald R, Rivard E. Chem. Sci. 2017; 8: 2337
- 20 Blagg RJ, Lawrence EJ, Wildgoose GG. ChemRxiv 2019; preprint
- 21 Wada M, Kanzaki M, Ogura H, Hayase S, Erabi T. J. Organomet. Chem. 1995; 485: 127
- 22a Holtrop F, Helling C, Lutz M, van Leest NP, de Bruin B, Slootweg JC. Synlett 2023; 34: 1122
- 22b Sieland B, Stahn M, Schoch R, Daniliuc C, Spicher S, Grimme S, Hansen A, Paradies J. Angew. Chem. Int. Ed. 2023; 62: e202308752
- 23 Hummel JP, Gust D, Mislow K. J. Am. Chem. Soc. 1974; 96: 3679
- 24a Frohn HJ. Organometallics 2001; 20: 4750
- 24b Frohn HJ, Jakobs S, Henkel G. Angew. Chem. Int. Ed. Engl. 1989; 11: 1506
- 24c Frohn HJ, Rossbach C. Z. Anorg. Allg. Chem. 1993; 619: 1672
- 25 Santi M, Ould DM. C, Wenz J, Soltani Y, Melen RL, Wirth T. Angew. Chem. Int. Ed. 2019; 58: 7861
- 26a Ishida S, Sakamoto K, Kobayashi R, Iwamoto T. Chem. Asian J. 2023; 18: e202300307
- 26b Kobayashi R, Ishida S, Iwamoto T. Angew. Chem. Int. Ed. 2019; 58: 9425
- 27 Chung M.-H, Yu IF, Liu Y.-H, Lin T.-S, Peng S.-M, Chiu C.-W. Inorg. Chem. 2018; 57: 11732
- 28 Boudjelel M, Sosa Carrizo ED, Mallet-Ladeira S, Massou S, Miqueu K, Bouhadir G, Bourissou D. ACS Catal. 2018; 8: 4459
- 29 Oestreich M, Hermeke J, Mohr J. Chem. Soc. Rev. 2015; 44: 2202
- 30 Gyömöre Á, Bakos M, Földes T, Pápai I, Domján A, Soós T. ACS Catal. 2015; 5: 5366
- 31a Fasano V, Ingleson MJ. Chem. Eur. J. 2017; 23: 2217
- 31b Fasano V, Radcliffe JE, Ingleson MJ. ACS Catal. 2016; 6: 1793
- 32 Hoshimoto Y, Kinoshita T, Hazra S, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2018; 140: 7292
- 33 Hisata Y, Washio T, Takizawa S, Ogoshi S, Hoshimoto Y. Nat. Commun. 2024; 15: 3708
- 34a Du Z, Liu C, Zhai J, Guo X, Xiong Y, Su W, He G. Catalysts 2021; 11: 393
- 34b Roostaie T, Abbaspour M, Makarem MA, Rahimpour MR. Hydrogen Production from Syngas, In: Advances in Synthesis Gas: Methods, Technologies and Applications, Vol. 3. Rahimpour MR, Makarem MA, Meshksar M. Elsevier; Amsterdam: 2023: 27-43
- 35 Hawkins RT, Lennarz WJ, Snyder HR. J. Am. Chem. Soc. 1960; 82: 3053
- 36 Bennett EL, Lawrence EJ, Blagg RJ, Mullen AS, MacMillan F, Ehlers AW, Scott DJ, Sapsford JS, Ashley AE, Wildgoose GG, Slootweg JC. Angew. Chem. Int. Ed. 2019; 58: 8362
- 37 Brown NM. D, Davidson F, Wilson JW. J. Organomet. Chem. 1981; 209: 1
- 38 Yamamoto E, Izumi K, Shishido R, Seki T, Tokodai N, Ito H. Chem. Eur. J. 2016; 22: 17547
- 39 Das S, Turnell-Ritson RC, Dyson PJ, Corminboeuf C. Angew. Chem. Int. Ed. 2022; 61: e202208987
- 40 Erdmann P, Schmitt M, Sigmund LM, Krämer F, Breher F, Greb L. Angew. Chem. Int. Ed. 2024; 63: e202403356