Subscribe to RSS
DOI: 10.1055/s-0043-1775423
Harnessing Photoredox and Weak Brønsted Base Dual Catalysis for Selective C(sp3)–H Bond Activation
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022R1A2C1005108).

Abstract
Visible light photoredox and weak Brønsted base dual catalysis has emerged as a powerful and versatile tool in the activation of C(sp3)–H bonds under mild reaction conditions. This method allows for the selective functionalization of a wide range of substrates, including amines, sulfides, ethers, dithianes and dithiolanes, dioxolanes, and alkenes. By exploiting the increased acidity of C–H bonds following single electron oxidation, this strategy employing a dual catalyst facilitates various carbon–carbon bond-forming reactions, as well as selective rearrangements, with high efficiency and regioselectivity. This review highlights recent advancements in this field, emphasizing the underlying mechanisms and the broad applicability of these methodologies in organic synthesis.
1 Introduction
2 Activation of α-C(sp3)–H Bonds in N-, S-, and O-Containing Compounds for C–C Bond Formation
3 Activation of Allylic C–H Bonds for C–C Bond Formation
4 Photoredox and Base Dual Catalysis for Rearrangement Reactions
5 Conclusion
Key words
photoredox - weak Brønsted base - dual catalysis - single electron oxidation - C(sp3)–H bond activationPublication History
Received: 03 October 2024
Accepted after revision: 08 November 2024
Article published online:
10 December 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 1b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 1c Fukuzumi S, Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
- 1d Angnes RA, Li Z, Correia CR. D, Hammond GB. Org. Biomol. Chem. 2015; 13: 9152
- 1e Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 1f Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 1g Crespi S, Fagnoni M. Chem. Rev. 2020; 120: 9790
- 1h Bell JD, Murphy JA. Chem. Soc. Rev. 2021; 50: 9540
- 1i Atriardi SR, Woo SK. Aldrichimica Acta 2023; 56: 25
- 1j Nguyen AT, Kang H, Luu TG, Suh S.-E, Kim H.-K. Bull. Korean Chem. Soc. 2024; 45: 738
- 2a Protti S, Fagnoni M, Ravelli D. ChemCatChem 2015; 7: 1516
- 2b Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2017: 2056
- 2c Capaldo L, Quadri LL, Ravelli D. Green Chem. 2020; 22: 3376
- 2d Cao H, Tang X, Tang H, Yuan Y, Wu J. Chem Catalysis 2021; 1: 523
- 2e Bonciolini S, Noël T, Capaldo L. Eur. J. Org. Chem. 2022; 2022: e202200417
- 2f Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 3 Schmittel M, Burghart A. Angew. Chem. Int. Ed. 1997; 36: 2550
- 4 Bordwell FG, Cheng JP. J. Am. Chem. Soc. 1989; 111: 1792
- 5 Alfonzo E, Hande SM. ACS Catal. 2020; 10: 12590
- 6a Smith JR. L, Masheder D. J. Chem. Soc., Perkin Trans. 2 1976; 47
- 6b Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
- 6c Gontala A, Huh H, Woo SK. Org. Lett. 2023; 25: 21
- 6d Han S. Bull. Korean Chem. Soc. 2023; 44: 172
- 6e Hong J, Lee W, Lee H.-S. Bull. Korean Chem. Soc. 2023; 44: 1034
- 6f Yoo S, Yi S, Ha H.-J. Bull. Korean Chem. Soc. 2024; 45: 247
- 7 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
- 8a Condie AG, González-Gómez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
- 8b Hu J, Wang J, Nguyen TH, Zheng N. Beilstein J. Org. Chem. 2013; 9: 1977
- 9 McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
- 10 Miyake Y, Nakajima K, Nishibayashi Y. J. Am. Chem. Soc. 2012; 134: 3338
- 11 Kohls P, Jadhav D, Pandey G, Reiser O. Org. Lett. 2012; 14: 672
- 12 Ruiz Espelt L, Wiensch EM, Yoon TP. J. Org. Chem. 2013; 78: 4107
- 13a Devendar P, Yang G.-F. Top. Curr. Chem. 2017; 375: 82
- 13b Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
- 13c Kim Y, Kim SY, Kim S.-G. Bull. Korean Chem. Soc. 2023; 44: 619
- 13d Na S, Lee A. Bull. Korean Chem. Soc. 2023; 44: 921
- 13e Anderton AS, Knowles OJ, Rossi-Ashton JA, Procter DJ. ACS Catal. 2024; 14: 2395
- 14 Alfonzo E, Hande SM. Org. Lett. 2021; 23: 6115
- 15 Rourke MJ, Wang CT, Schull CR, Scheidt KA. ACS Catal. 2023; 13: 7987
- 16a Tobisu M, Yasutome A, Kinuta H, Nakamura K, Chatani N. Org. Lett. 2014; 16: 5572
- 16b Khatun N, Kim MJ, Woo SK. Org. Lett. 2018; 20: 6239
- 16c Nam SB, Khatun N, Kang YW, Park BY, Woo SK. Chem. Commun. 2020; 56: 2873
- 16d Atriardi SR, Kim J.-Y, Anita Y, Woo SK. Bull. Korean Chem. Soc. 2023; 44: 50
- 16e Kang YW, Kim RH, Atriardi SR, Woo SK. J. Org. Chem. 2023; 88: 3555
- 16f Choi EG, Kim EB, Lee DH. Bull. Korean Chem. Soc. 2024; 45: 362
- 17a Rohe S, Morris AO, McCallum T, Barriault L. Angew. Chem. Int. Ed. 2018; 57: 15664
- 17b Dai Z.-Y, Nong Z.-S, Song S, Wang P.-S. Org. Lett. 2021; 23: 3157
- 18 Bell JD, Robb I, Murphy JA. Chem. Sci. 2022; 13: 12921
- 19a Seebach D. Angew. Chem. Int. Ed. 1969; 8: 639
- 19b Seebach D, Corey EJ. J. Org. Chem. 1975; 40: 231
- 20a Li Y, Miyazawa K, Koike T, Akita M. Org. Chem. Front. 2015; 2: 319
- 20b Gualandi A, Matteucci E, Monti F, Baschieri A, Armaroli N, Sambri L, Cozzi PG. Chem. Sci. 2017; 8: 1613
- 21 Lee M, Chen Y.-H, Hung T.-H, Chang W, Yan W.-C, Leow D. RSC Adv. 2015; 5: 86402
- 22a Liu D, Liu C, Li H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 4453
- 22b Jin J, MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 1565
- 22c Chan WC, Vinod JK, Koide K. J. Org. Chem. 2021; 86: 3674
- 23a Ravelli D, Albini A, Fagnoni M. Chem. Eur. J. 2011; 17: 572
- 23b Murphy JJ, Bastida D, Paria S, Fagnoni M, Melchiorre P. Nature 2016; 532: 218
- 24 Tian J, Zhou L. Chem. Sci. 2023; 14: 6045
- 25a Masarwa A, Didier D, Zabrodski T, Schinkel M, Ackermann L, Marek I. Nature 2014; 505: 199
- 25b Gontala A, Woo SK. Adv. Synth. Catal. 2020; 362: 3223
- 25c Gontala A, Jang GS, Woo SK. Bull. Korean Chem. Soc. 2021; 42: 506
- 25d Yue H, Zhu C, Huang L, Dewanji A, Rueping M. Chem. Commun. 2022; 58: 171
- 26a Yamamoto Y, Asao N. Chem. Rev. 1993; 93: 2207
- 26b Denmark SE, Fu J. Chem. Rev. 2003; 103: 2763
- 26c Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
- 27 Kazerouni AM, McKoy QA, Blakey SB. Chem. Commun. 2020; 56: 13287
- 28a Pirnot MT, Rankic DA, Martin DB. C, MacMillan DW. C. Science 2013; 339: 1593
- 28b Terrett JA, Clift MD, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 6858
- 28c Jeffrey JL, Petronijević FR, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 8404
- 29a Afewerki S, Cordova A. Chem Rev 2016; 116: 13512
- 29b Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem Rev 2017; 117: 9016
- 29c Holmberg-Douglas N, Nicewicz DA. Chem. Rev. 2022; 122: 1925
- 30 Zhou R, Liu H, Tao H, Yu X, Wu J. Chem. Sci. 2017; 8: 4654
- 31a Heidbreder A, Mattay J. Tetrahedron Lett. 1992; 33: 1973
- 31b Hintz S, Fröhlich R, Mattay J. Tetrahedron Lett. 1996; 37: 7349
- 32 Ohmatsu K, Nakashima T, Sato M, Ooi T. Nat. Commun. 2019; 10: 2706
- 33 Nakashima T, Ohmatsu K, Ooi T. Org. Biomol. Chem. 2021; 19: 141
- 34a Aubé J. Chem. Soc. Rev. 1997; 26: 269
- 34b Williamson KS, Michaelis DJ, Yoon TP. Chem. Rev. 2014; 114: 8016
- 34c Davis FA. Tetrahedron 2018; 74: 3198
- 34d Woo SK. Oxaziridines and Oxazirines . In Comprehensive Heterocyclic Chemistry IV, Vol. 1. Black DStC, Cossy J, Stevens CV. Elsevier; Amsterdam: 2022: 582
- 35 Jang GS, Lee J, Seo J, Woo SK. Org. Lett. 2017; 19: 6448
- 36 Newcomb M, Reeder RA. J. Org. Chem. 1980; 45: 1489
- 37 Park J, Park S, Jang GS, Kim RH, Jung J, Woo SK. Chem. Commun. 2021; 57: 9995