Semin Neurol 2023; 43(05): 689-698
DOI: 10.1055/s-0043-1775764
Review Article

Blood-Based Biomarkers for Neuroprognostication in Acute Brain Injury

Andrew M. Nguyen
1   Neurosciences Critical Care Program, Department of Neurology, Oregon Health & Science University, Portland, Oregon
,
Vishal Saini
1   Neurosciences Critical Care Program, Department of Neurology, Oregon Health & Science University, Portland, Oregon
,
H. E. Hinson
2   Department of Neurology, University of California San Francisco, San Francisco, California
› Institutsangaben

Abstract

Acute brain injury causes loss of functionality in patients that often is devastating. Predicting the degree of functional loss and overall prognosis requires a multifaceted approach to help patients, and more so their families, make important decisions regarding plans and goals of care. A variety of blood-based markers have been studied as one aspect of this determination. In this review, we discuss CNS-derived and systemic markers that have been studied for neuroprognostication purposes. We discuss the foundation of each protein, the conditions in which it has been studied, and how the literature has used these markers for interpretation. We also discuss challenges to using each marker in each section as well.



Publikationsverlauf

Artikel online veröffentlicht:
26. September 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Hoiland RL, Rikhraj KJK, Thiara S. et al. Neurologic prognostication after cardiac arrest using brain biomarkers: a systematic review and meta-analysis. JAMA Neurol 2022; 79 (04) 390-398
  • 2 Scolletta S, Donadello K, Santonocito C, Franchi F, Taccone FS. Biomarkers as predictors of outcome after cardiac arrest. Expert Rev Clin Pharmacol 2012; 5 (06) 687-699
  • 3 Roine RO, Somer H, Kaste M, Viinikka L, Karonen S-L. Neurological outcome after out-of-hospital cardiac arrest. Prediction by cerebrospinal fluid enzyme analysis. Arch Neurol 1989; 46 (07) 753-756
  • 4 Panchal AR, Bartos JA, Cabañas JG. et al; Adult Basic and Advanced Life Support Writing Group. Part 3: Adult basic and advanced life support: 2020 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2020; 142 (16, suppl 2): S366-S468
  • 5 Cheng F, Yuan Q, Yang J, Wang W, Liu H. The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis. PLoS One 2014; 9 (09) e106680
  • 6 Mercier E, Boutin A, Shemilt M. et al. Predictive value of neuron-specific enolase for prognosis in patients with moderate or severe traumatic brain injury: a systematic review and meta-analysis. CMAJ Open 2016; 4 (03) E371-E382
  • 7 Thelin EP, Jeppsson E, Frostell A. et al. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit Care 2016; 20: 285
  • 8 Helmrich IRAR, Czeiter E, Amrein K. et al; CENTER-TBI Participants and Investigators. Incremental prognostic value of acute serum biomarkers for functional outcome after traumatic brain injury (CENTER-TBI): an observational cohort study. Lancet Neurol 2022; 21 (09) 792-802
  • 9 Kedziora J, Burzynska M, Gozdzik W, Kübler A, Kobylinska K, Adamik B. Biomarkers of neurological outcome after aneurysmal subarachnoid hemorrhage as early predictors at discharge from an intensive care unit. Neurocrit Care 2021; 34 (03) 856-866
  • 10 Jung CS, Lange B, Zimmermann M, Seifert V. CSF and serum biomarkers focusing on cerebral vasospasm and ischemia after subarachnoid hemorrhage. Stroke Res Treat 2013; 2013: 560305
  • 11 Yu W-H, Wang W-H, Dong X-Q. et al. Prognostic significance of plasma copeptin detection compared with multiple biomarkers in intracerebral hemorrhage. Clin Chim Acta 2014; 433: 174-178
  • 12 Alatas ÖD, Gürger M, Ateşçelik M. et al. Neuron-specific enolase, S100 calcium-binding protein B, and heat shock protein 70 levels in patients with intracranial hemorrhage. Medicine (Baltimore) 2015; 94 (45) e2007
  • 13 Anand N, Stead LG. Neuron-specific enolase as a marker for acute ischemic stroke: a systematic review. Cerebrovasc Dis 2005; 20 (04) 213-219
  • 14 Wunderlich MT, Lins H, Skalej M, Wallesch C-W, Goertler M. Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin Neurol Neurosurg 2006; 108 (06) 558-563
  • 15 Zaheer S, Beg M, Rizvi I, Islam N, Ullah E, Akhtar N. Correlation between serum neuron specific enolase and functional neurological outcome in patients of acute ischemic stroke. Ann Indian Acad Neurol 2013; 16 (04) 504-508
  • 16 Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 2015; 38 (06) 364-374
  • 17 Schiff L, Hadker N, Weiser S, Rausch C. A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Mol Diagn Ther 2012; 16 (02) 79-92
  • 18 Brunkhorst R, Pfeilschifter W, Foerch C. Astroglial proteins as diagnostic markers of acute intracerebral hemorrhage-pathophysiological background and clinical findings. Transl Stroke Res 2010; 1 (04) 246-251
  • 19 Ebner F, Moseby-Knappe M, Mattsson-Carlgren N. et al. Serum GFAP and UCH-L1 for the prediction of neurological outcome in comatose cardiac arrest patients. Resuscitation 2020; 154: 61-68
  • 20 Luoto TM, Raj R, Posti JP, Gardner AJ, Panenka WJ, Iverson GL. A systematic review of the usefulness of glial fibrillary acidic protein for predicting acute intracranial lesions following head trauma. Front Neurol 2017; 8: 652
  • 21 Moseby-Knappe M, Mattsson-Carlgren N, Stammet P. et al. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med 2021; 47 (09) 984-994
  • 22 Humaloja J, Lähde M, Ashton NJ. et al; COMACARE Study Groups. GFAp and tau protein as predictors of neurological outcome after out-of-hospital cardiac arrest: a post hoc analysis of the COMACARE trial. Resuscitation 2022; 170: 141-149
  • 23 Anderson TN, Hwang J, Munar M. et al. Blood-based biomarkers for prediction of intracranial hemorrhage and outcome in patients with moderate or severe traumatic brain injury. J Trauma Acute Care Surg 2020; 89 (01) 80-86
  • 24 Vos PE, Jacobs B, Andriessen TMJC. et al. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology 2010; 75 (20) 1786-1793
  • 25 Lei J, Gao G, Feng J. et al. Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: a prospective cohort study. Crit Care 2015; 19: 362
  • 26 Nylén K, Csajbok LZ, Öst M. et al. Serum glial fibrillary acidic protein is related to focal brain injury and outcome after aneurysmal subarachnoid hemorrhage. Stroke 2007; 38 (05) 1489-1494
  • 27 Gyldenholm T, Hvas CL, Hvas A-M, Hviid CVB. Serum glial fibrillary acidic protein (GFAP) predicts outcome after intracerebral and subarachnoid hemorrhage. Neurol Sci 2022; 43 (10) 6011-6019
  • 28 Foerch C, Curdt I, Yan B. et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry 2006; 77 (02) 181-184
  • 29 Xiong L, Yang Y, Zhang M, Xu W. The use of serum glial fibrillary acidic protein test as a promising tool for intracerebral hemorrhage diagnosis in Chinese patients and prediction of the short-term functional outcomes. Neurol Sci 2015; 36 (11) 2081-2087
  • 30 Dvorak F, Haberer I, Sitzer M, Foerch C. Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis 2009; 27 (01) 37-41
  • 31 Wunderlich MT, Wallesch CW, Goertler M. Release of glial fibrillary acidic protein is related to the neurovascular status in acute ischemic stroke. Eur J Neurol 2006; 13 (10) 1118-1123
  • 32 Liu G, Geng J. Glial fibrillary acidic protein as a prognostic marker of acute ischemic stroke. Hum Exp Toxicol 2018; 37 (10) 1048-1053
  • 33 Wang KK, Yang Z, Sarkis G, Torres I, Raghavan V. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. Expert Opin Ther Targets 2017; 21 (06) 627-638
  • 34 Wang KK, Yang Z, Zhu T. et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 2018; 18 (02) 165-180
  • 35 Huesgen KW, Elmelige YO, Yang Z. et al; Florida Cardiac Arrest Resource Team. Ultra-early serum concentrations of neuronal and astroglial biomarkers predict poor neurological outcome after out-of-hospital cardiac arrest-a pilot neuroprognostic study. Resuscitation Plus 2021; 7: 100133
  • 36 Fink EL, Kochanek PM, Panigrahy A. et al; Personalizing Outcomes After Child Cardiac Arrest (POCCA) Investigators. Association of blood-based brain injury biomarker concentrations with outcomes after pediatric cardiac arrest. JAMA Netw Open 2022; 5 (09) e2230518
  • 37 Mondello S, Linnet A, Buki A. et al. Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery 2012; 70 (03) 666-675
  • 38 Takala RSK, Posti JP, Runtti H. et al. Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 as outcome predictors in traumatic brain injury. World Neurosurg 2016; 87: 8-20
  • 39 Kiiski H, Tenhunen J, Ala-Peijari M. et al. Increased plasma UCH-L1 after aneurysmal subarachnoid hemorrhage is associated with unfavorable neurological outcome. J Neurol Sci 2016; 361: 144-149
  • 40 Zheng Y-K, Dong X-Q, Du Q. et al. Comparison of plasma Copeptin and multiple biomarkers for assessing prognosis of patients with aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2017; 475: 64-69
  • 41 Ren C, Kobeissy F, Alawieh A. et al. Assessment of serum UCH-L1 and GFAP in acute stroke patients. Sci Rep 2016; 6: 24588
  • 42 Yigit I, Atescelik M, Yilmaz M, Goktekin MC, Gurger M, Ilhan N. Investigation of UCH-L1 levels in ischemic stroke, intracranial hemorrhage and metabolic disorder induced impaired consciousness. Am J Emerg Med 2017; 35 (12) 1895-1898
  • 43 Luger S, Jæger HS, Dixon J. et al; BE FAST III Study Group. Diagnostic accuracy of glial fibrillary acidic protein and ubiquitin carboxy-terminal hydrolase-L1 serum concentrations for differentiating acute intracerebral hemorrhage from ischemic stroke. Neurocrit Care 2020; 33 (01) 39-48
  • 44 Castellani RJ, Perry G. Tau biology, tauopathy, traumatic brain injury, and diagnostic challenges. J Alzheimers Dis 2019; 67 (02) 447-467
  • 45 Blennow K, Brody DL, Kochanek PM. et al. Traumatic brain injuries. Nat Rev Dis Primers 2016; 2: 1-19
  • 46 Mattsson N, Zetterberg H, Nielsen N. et al. Serum tau and neurological outcome in cardiac arrest. Ann Neurol 2017; 82 (05) 665-675
  • 47 Pandey S, Singh K, Sharma V. et al. A prospective pilot study on serum cleaved tau protein as a neurological marker in severe traumatic brain injury. Br J Neurosurg 2017; 31 (03) 356-363
  • 48 Hu H-T, Xiao F, Yan Y-Q, Wen S-Q, Zhang L. The prognostic value of serum tau in patients with intracerebral hemorrhage. Clin Biochem 2012; 45 (16-17): 1320-1324
  • 49 Bielewicz J, Kurzepa J, Czekajska-Chehab E, Stelmasiak Z, Bartosik-Psujek H. Does serum tau protein predict the outcome of patients with ischemic stroke?. J Mol Neurosci 2011; 43 (03) 241-245
  • 50 De Vos A, Bjerke M, Brouns R. et al. Neurogranin and tau in cerebrospinal fluid and plasma of patients with acute ischemic stroke. BMC Neurol 2017; 17 (01) 170
  • 51 Zetterberg H, Smith DH, Blennow K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 2013; 9 (04) 201-210
  • 52 Moseby-Knappe M, Mattsson N, Nielsen N. et al. Serum neurofilament light chain for prognosis of outcome after cardiac arrest. JAMA Neurol 2019; 76 (01) 64-71
  • 53 Khalil M, Teunissen CE, Otto M. et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 2018; 14 (10) 577-589
  • 54 Barro C, Chitnis T, Weiner HL. Blood neurofilament light: a critical review of its application to neurologic disease. Ann Clin Transl Neurol 2020; 7 (12) 2508-2523
  • 55 Al Nimer F, Thelin E, Nyström H. et al. Comparative assessment of the prognostic value of biomarkers in traumatic brain injury reveals an independent role for serum levels of neurofilament light. PLoS One 2015; 10 (07) e0132177
  • 56 Shahim P, Gren M, Liman V. et al. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci Rep 2016; 6: 36791
  • 57 Garland P, Morton M, Zolnourian A. et al. Neurofilament light predicts neurological outcome after subarachnoid haemorrhage. Brain 2021; 144 (03) 761-768
  • 58 Hviid CVB, Lauridsen SV, Gyldenholm T, Sunde N, Parkner T, Hvas A-M. Plasma neurofilament light chain is associated with poor functional outcome and mortality rate after spontaneous subarachnoid hemorrhage. Transl Stroke Res 2020; 11 (04) 671-677
  • 59 Zhou Z, Zeng J, Yu S. et al. Neurofilament light chain and S100B serum levels are associated with disease severity and outcome in patients with aneurysmal subarachnoid hemorrhage. Front Neurol 2022; 13: 956043
  • 60 Gendron TF, Badi MK, Heckman MG. et al. Plasma neurofilament light predicts mortality in patients with stroke. Sci Transl Med 2020; 12 (569) 1913
  • 61 Hviid CVB, Gyldenholm T, Lauridsen SV, Hjort N, Hvas A-M, Parkner T. Plasma neurofilament light chain is associated with mortality after spontaneous intracerebral hemorrhage. Clin Chem Lab Med 2020; 58 (02) 261-267
  • 62 Liu D, Chen J, Wang X, Xin J, Cao R, Liu Z. Serum neurofilament light chain as a predictive biomarker for ischemic stroke outcome: a systematic review and meta-analysis. Journal of Stroke and Cerebrovascular Diseases [Internet]. Elsevier; 2020 [cited 2022 Sep 28];29. Accessed August 12, 2023 at:: https://www.strokejournal.org/article/S1052-3057(20)30197-X/fulltext
  • 63 Peng Y, Li Q, Qin L. et al. Combination of serum neurofilament light chain levels and MRI markers to predict cognitive function in ischemic stroke. Neurorehabil Neural Repair 2021; 35 (03) 247-255
  • 64 Wu J, Wu D, Liang Y, Zhang Z, Zhuang L, Wang Z. Plasma neurofilament light chain: a biomarker predicting severity in patients with acute ischemic stroke. Medicine (Baltimore) 2022; 101 (26) e29692
  • 65 Chen C-H, Chu H-J, Hwang Y-T. et al. Plasma neurofilament light chain level predicts outcomes in stroke patients receiving endovascular thrombectomy. J Neuroinflammation 2021; 18 (01) 195
  • 66 Nielsen HH, Soares CB, Høgedal SS. et al. Acute neurofilament light chain plasma levels correlate with stroke severity and clinical outcome in ischemic stroke patients. Front Neurol 2020; 11: 448
  • 67 Correia M, Silva I, Gabriel D. et al. Early plasma biomarker dynamic profiles are associated with acute ischemic stroke outcomes. Eur J Neurol 2022; 29 (06) 1630-1642
  • 68 Oddo M, Rossetti AO. Predicting neurological outcome after cardiac arrest. Curr Opin Crit Care 2011; 17 (03) 254-259
  • 69 Park JH, Wee JH, Choi SP, Oh JH, Cheol S. Assessment of serum biomarkers and coagulation/fibrinolysis markers for prediction of neurological outcomes of out of cardiac arrest patients treated with therapeutic hypothermia. Clin Exp Emerg Med 2019; 6 (01) 9-18
  • 70 Mussack T, Biberthaler P, Kanz K-G. et al. Serum S-100B and interleukin-8 as predictive markers for comparative neurologic outcome analysis of patients after cardiac arrest and severe traumatic brain injury. Crit Care Med 2002; 30 (12) 2669-2674
  • 71 Lai PM, Du R. Association between S100B levels and long-term outcome after aneurysmal subarachnoid hemorrhage: systematic review and pooled analysis. PLoS One 2016; 11 (03) e0151853
  • 72 Jauch EC, Lindsell C, Broderick J, Fagan SC, Tilley BC, Levine SR. NINDS rt-PA Stroke Study Group. Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke 2006; 37 (10) 2508-2513
  • 73 Kazmierski R, Michalak S, Wencel-Warot A, Nowinski WL. Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients. Neurology 2012; 79 (16) 1677-1685
  • 74 Hinson HE, Rowell S, Schreiber M. Clinical evidence of inflammation driving secondary brain injury: a systematic review. J Trauma Acute Care Surg 2015; 78 (01) 184-191
  • 75 Licastro F, Hrelia S, Porcellini E. et al. Peripheral inflammatory markers and antioxidant response during the post-acute and chronic phase after severe traumatic brain injury. Front Neurol [Internet]. 2016. Accessed August 12, 2023 at: https://www.frontiersin.org/articles/10.3389/fneur.2016.00189/full
  • 76 Venetsanou K, Vlachos K, Moles A, Fragakis G, Fildissis G, Baltopoulos G. Hypolipoproteinemia and hyperinflammatory cytokines in serum of severe and moderate traumatic brain injury (TBI) patients. Eur Cytokine Netw 2007; 18 (04) 206-209
  • 77 Woiciechowsky C, Schöning B, Cobanov J, Lanksch WR, Volk H-D, Döcke W-D. Early IL-6 plasma concentrations correlate with severity of brain injury and pneumonia in brain-injured patients. J Trauma 2002; 52 (02) 339-345
  • 78 Kalabalikis P, Papazoglou K, Gouriotis D. et al. Correlation between serum IL-6 and CRP levels and severity of head injury in children. Intensive Care Med 1999; 25 (03) 288-292
  • 79 Worthmann H, Tryc AB, Goldbecker A. et al. The temporal profile of inflammatory markers and mediators in blood after acute ischemic stroke differs depending on stroke outcome. Cerebrovasc Dis 2010; 30 (01) 85-92
  • 80 Lasek-Bal A, Jedrzejowska-Szypulka H, Student S. et al. The importance of selected markers of inflammation and blood-brain barrier damage for short-term ischemic stroke prognosis. J Physiol Pharmacol 2019; 70 (02) 70
  • 81 Lo T-YM, Jones PA, Minns RA. Combining coma score and serum biomarker levels to predict unfavorable outcome following childhood brain trauma. J Neurotrauma 2010; 27 (12) 2139-2145
  • 82 Sohrevardi SM, Ahmadinejad M, Said K. et al. Evaluation of TGF β1, IL-8 and nitric oxide in the serum of diffuse axonal injury patients and its association with clinical status and outcome. Turk Neurosurg 2013; 23 (02) 151-154
  • 83 Gopcevic A, Mazul-Sunko B, Marout J. et al. Plasma interleukin-8 as a potential predictor of mortality in adult patients with severe traumatic brain injury. Tohoku J Exp Med 2007; 211 (04) 387-393
  • 84 Rhodes J, Sharkey J, Andrews P. Serum IL-8 and MCP-1 concentration do not identify patients with enlarging contusions after traumatic brain injury. J Trauma 2009; 66 (06) 1591-1597 , discussion 1598
  • 85 Kushi H, Saito T, Makino K, Hayashi N. IL-8 is a key mediator of neuroinflammation in severe traumatic brain injuries. Acta Neurochir Suppl (Wien) 2003; 86: 347-350
  • 86 Shohami E, Ginis I, Hallenbeck JM. Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 1999; 10 (02) 119-130
  • 87 Feuerstein GZ, Liu T, Barone FC. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev 1994; 6 (04) 341-360
  • 88 Shao X, Yang X, Shen J. et al. TNF-α-induced p53 activation induces apoptosis in neurological injury. J Cell Mol Med 2020; 24 (12) 6796-6803
  • 89 Stein DM, Lindell A, Murdock KR. et al. Relationship of serum and cerebrospinal fluid biomarkers with intracranial hypertension and cerebral hypoperfusion after severe traumatic brain injury. J Trauma 2011; 70 (05) 1096-1103
  • 90 Tuttolomondo A, Di Raimondo D, Pecoraro R. et al. Early high-dosage atorvastatin treatment improved serum immune-inflammatory markers and functional outcome in acute ischemic strokes classified as large artery atherosclerotic stroke: a randomized trial. Medicine (Baltimore) 2016; 95 (13) e3186