Semin Neurol 2023; 43(06): 909-928
DOI: 10.1055/s-0043-1776775
Review Article

Brain Tumors in Adolescents and Young Adults: A Review

Julien Rousseau
1   Division of Neurology, Department of Medicine, Universite de Montreal, Montreal, Quebec, Canada
,
Julie Bennett
2   Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
3   Canadian AYA Neuro-Oncology Network (CANON), Toronto, Ontario, Canada
,
Mary Jane Lim-Fat
3   Canadian AYA Neuro-Oncology Network (CANON), Toronto, Ontario, Canada
4   Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
› Author Affiliations

Abstract

Brain tumors account for the majority of cancer-related deaths in adolescents and young adults (AYAs), defined as individuals aged 15 to 39. AYAs constitute a distinct population in which both pediatric- and adult-type central nervous system (CNS) tumors can be observed. Clinical manifestations vary depending on tumor location and often include headaches, seizures, focal neurological deficits, and signs of increased intracranial pressure. With the publication of the updated World Health Organization CNS tumor classification in 2021, diagnoses have been redefined to emphasize key molecular alterations. Gliomas represent the majority of malignant brain tumors in this age group. Glioneuronal and neuronal tumors are associated with longstanding refractory epilepsy. The classification of ependymomas and medulloblastomas has been refined, enabling better identification of low-risk tumors that could benefit from treatment de-escalation strategies. Owing to their midline location, germ cell tumors often present with oculomotor and visual alterations as well as endocrinopathies. The management of CNS tumors in AYA is often extrapolated from pediatric and adult guidelines, and generally consists of a combination of surgical resection, radiation therapy, and systemic therapy. Ongoing research is investigating multiple agents targeting molecular alterations, including isocitrate dehydrogenase inhibitors, SHH pathway inhibitors, and BRAF inhibitors. AYA patients with CNS tumors should be managed by multidisciplinary teams and counselled regarding fertility preservation, psychosocial comorbidities, and risks of long-term comorbidities. There is a need for further efforts to design clinical trials targeting CNS tumors in the AYA population.



Publication History

Article published online:
10 November 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-oncol 2021; 23 (12, suppl 2): iii1 iii105.
  • 2 Lim-Fat MJ, Macdonald M, Lapointe S. et al. Molecular testing for adolescent and young adult central nervous system tumors: a Canadian guideline. Front Oncol 2022; 12: 960509
  • 3 Board WHOCoTE, World Health O, International Agency for Research on C.. WHO classification of tumours: central nervous system tumours. 5th edition. ed. Lyon: International Agency for Research on Cancer; 2021
  • 4 Louis DN, Perry A, Wesseling P. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-oncol 2021; 23 (08) 1231-1251
  • 5 Hartmann C, Meyer J, Balss J. et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 2009; 118 (04) 469-474
  • 6 DeWitt JC, Jordan JT, Frosch MP. et al. Cost-effectiveness of IDH testing in diffuse gliomas according to the 2016 WHO classification of tumors of the central nervous system recommendations. Neuro-oncol 2017; 19 (12) 1640-1650
  • 7 van den Bent MJ, Afra D, de Witte O. et al; EORTC Radiotherapy and Brain Tumor Groups and the UK Medical Research Council. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 2005; 366 (9490) 985-990
  • 8 Pignatti F, van den Bent M, Curran D. et al; European Organization for Research and Treatment of Cancer Brain Tumor Cooperative Group, European Organization for Research and Treatment of Cancer Radiotherapy Cooperative Group. Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol 2002; 20 (08) 2076-2084
  • 9 Study of Vorasidenib (AG-881) in Participants with Residual or Recurrent Grade 2 Glioma with an IDH1 or IDH2 Mutation (INDIGO). ClinicalTrials.gov. 2019 . Accessed October 27, 2023 at: https://clinicaltrials.gov/ct2/show/NCT04164901
  • 10 Pediatric central nervous system cancers. National Comprehensive Cancer Network. 2022 [updated October 31, 2022 ]. Accessed October 27, 2023 at: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1509
  • 11 Mohile NA, Messersmith H, Gatson NT. et al. Therapy for diffuse astrocytic and oligodendroglial tumors in adults: ASCO-SNO guideline. J Clin Oncol 2022; 40 (04) 403-426
  • 12 Shaw EG, Wang M, Coons SW. et al. Randomized trial of radiation therapy plus procarbazine, lomustine, and vincristine chemotherapy for supratentorial adult low-grade glioma: initial results of RTOG 9802. J Clin Oncol 2012; 30 (25) 3065-3070
  • 13 van den Bent MJ, Brandes AA, Taphoorn MJ. et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013; 31 (03) 344-350
  • 14 Berger TR, Wen PY, Lang-Orsini M, Chukwueke UN. World Health Organization 2021 classification of central nervous system tumors and implications for therapy for adult-type gliomas: a review. JAMA Oncol 2022; 8 (10) 1493-1501
  • 15 Patel SH, Poisson LM, Brat DJ. et al. T2-FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA project. Clin Cancer Res 2017; 23 (20) 6078-6085
  • 16 Johnson DR, Kaufmann TJ, Patel SH, Chi AS, Snuderl M, Jain R. There is an exception to every rule-T2-FLAIR mismatch sign in gliomas. Neuroradiology 2019; 61 (02) 225-227
  • 17 van den Bent MJ, Baumert B, Erridge SC. et al. Interim results from the CATNON trial (EORTC study 26053–22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, open-label intergroup study. Lancet 2017; 390 (10103): 1645-1653
  • 18 Wen PY, Weller M, Lee EQ. et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-oncol 2020; 22 (08) 1073-1113
  • 19 Stupp R, Mason WP, van den Bent MJ. et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352 (10) 987-996
  • 20 Stupp R, Taillibert S, Kanner A. et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 2017; 318 (23) 2306-2316
  • 21 Ostrom QT, Price M, Ryan K. et al. CBTRUS statistical report: pediatric brain tumor foundation childhood and adolescent primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-oncol 2022; 24 (suppl 3): iii1-iii38
  • 22 Bennett J, Erker C, Lafay-Cousin L. et al. Canadian pediatric neuro-oncology standards of practice. Front Oncol 2020; 10: 593192
  • 23 Gnekow AK, Kandels D, Tilburg CV. et al. SIOP-E-BTG and GPOH guidelines for diagnosis and treatment of children and adolescents with low grade glioma. Klin Padiatr 2019; 231 (03) 107-135
  • 24 Krishnatry R, Zhukova N, Guerreiro Stucklin AS. et al. Clinical and treatment factors determining long-term outcomes for adult survivors of childhood low-grade glioma: a population-based study. Cancer 2016; 122 (08) 1261-1269
  • 25 Lassaletta A, Scheinemann K, Zelcer SM. et al. Phase II weekly vinblastine for chemotherapy-naïve children with progressive low-grade glioma: a Canadian Pediatric Brain Tumor Consortium study. J Clin Oncol 2016; 34 (29) 3537-3543
  • 26 Packer RJ, Lange B, Ater J. et al. Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J Clin Oncol 1993; 11 (05) 850-856
  • 27 Rosca L, Robert-Boire V, Delisle JF, Samson Y, Perreault S. Carboplatin and vincristine neurotoxicity in the treatment of pediatric low-grade gliomas. Pediatr Blood Cancer 2018; 65 (11) e27351
  • 28 Ryall S, Zapotocky M, Fukuoka K. et al. Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell 2020; 37 (04) 569-583.e5
  • 29 Banerjee A, Jakacki RI, Onar-Thomas A. et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro-oncol 2017; 19 (08) 1135-1144
  • 30 Fangusaro J, Onar-Thomas A, Young Poussaint T. et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol 2019; 20 (07) 1011-1022
  • 31 Fangusaro J, Onar-Thomas A, Poussaint TY. et al. A phase II trial of selumetinib in children with recurrent optic pathway and hypothalamic low-grade glioma without NF1: a Pediatric Brain Tumor Consortium study. Neuro-oncol 2021; 23 (10) 1777-1788
  • 32 Andrews LJ, Thornton ZA, Saincher SS. et al. Prevalence of BRAFV600 in glioma and use of BRAF Inhibitors in patients with BRAFV600 mutation-positive glioma: systematic review. Neuro-oncol 2022; 24 (04) 528-540
  • 33 Wen PY, Stein A, van den Bent M. et al. Dabrafenib plus trametinib in patients with BRAFV600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol 2022; 23 (01) 53-64
  • 34 Phase II Pediatric Study with Dabrafenib in Combination with Trametinib in Patients with HGG and LGG. ClinicalTrials.gov. 2022 . Accessed October 21, 2022 at: https://clinicaltrials.gov/ct2/show/NCT02684058
  • 35 A Study of the Drugs Selumetinib Versus Carboplatin/Vincristine in Patients with Neurofibromatosis and Low-Grade Glioma. ClinicalTrials.gov. 2022 . Accessed October 21, 2022 at: https://clinicaltrials.gov/ct2/show/NCT03871257
  • 36 Trametinib for Pediatric Neuro-oncology Patients with Refractory Tumor and Activation of the MAPK/ERK Pathway. ClinicalTrials.gov. 2022 . Accessed October 21, 2022 at: https://clinicaltrials.gov/ct2/show/NCT03363217
  • 37 Gregory TA, Chumbley LB, Henson JW, Theeler BJ. Adult pilocytic astrocytoma in the molecular era: a comprehensive review. CNS Oncol 2021; 10 (01) CNS68
  • 38 Salles D, Santino SF, Ribeiro DA, Malinverni ACM, Stávale JN. The involvement of the MAPK pathway in pilocytic astrocytomas. Pathol Res Pract 2022; 232: 153821
  • 39 Milde T, Rodriguez FJ, Barnholtz-Sloan JS, Patil N, Eberhart CG, Gutmann DH. Reimagining pilocytic astrocytomas in the context of pediatric low-grade gliomas. Neuro-oncol 2021; 23 (10) 1634-1646
  • 40 Theeler BJ, Ellezam B, Sadighi ZS. et al. Adult pilocytic astrocytomas: clinical features and molecular analysis. Neuro-oncol 2014; 16 (06) 841-847
  • 41 Lee KJ, Marchan E, Peterson J. et al. Management and survival of adult patients with pilocytic astrocytoma in the national cancer database. World Neurosurg 2018; 112: e881-e887
  • 42 Koeller KK, Rushing EJ. From the archives of the AFIP: pilocytic astrocytoma: radiologic-pathologic correlation. Radiographics 2004; 24 (06) 1693-1708
  • 43 Gaudino S, Martucci M, Russo R. et al. MR imaging of brain pilocytic astrocytoma: beyond the stereotype of benign astrocytoma. Childs Nerv Syst 2017; 33 (01) 35-54
  • 44 Bornhorst M, Frappaz D, Packer RJ. Pilocytic astrocytomas. Handb Clin Neurol 2016; 134: 329-344
  • 45 Bond KM, Hughes JD, Porter AL, Orina J, Fang S, Parney IF. Adult pilocytic astrocytoma: an institutional series and systematic literature review for extent of resection and recurrence. World Neurosurg 2018; 110: 276-283
  • 46 Dodgshun AJ, Maixner WJ, Hansford JR, Sullivan MJ. Low rates of recurrence and slow progression of pediatric pilocytic astrocytoma after gross-total resection: justification for reducing surveillance imaging. J Neurosurg Pediatr 2016; 17 (05) 569-572
  • 47 Nelson AJ, Zakaria R, Jenkinson MD, Brodbelt AR. Extent of resection predicts risk of progression in adult pilocytic astrocytoma. Br J Neurosurg 2019; 33 (03) 343-347
  • 48 Ogiwara H, Bowman RM, Tomita T. Long-term follow-up of pediatric benign cerebellar astrocytomas. Neurosurgery 2012; 70 (01) 40-47 , discussion 47–48
  • 49 Johnson DR, Brown PD, Galanis E, Hammack JE. Pilocytic astrocytoma survival in adults: analysis of the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute. J Neurooncol 2012; 108 (01) 187-193
  • 50 Parsa CF, Givrad S. Juvenile pilocytic astrocytomas do not undergo spontaneous malignant transformation: grounds for designation as hamartomas. Br J Ophthalmol 2008; 92 (01) 40-46
  • 51 McAuley E, Brophy H, Hayden J. et al. The benefit of surveillance imaging for paediatric cerebellar pilocytic astrocytoma. Childs Nerv Syst 2019; 35 (05) 801-805
  • 52 Bender K, Perez E, Chirica M. et al. High-grade astrocytoma with piloid features (HGAP): the Charité experience with a new central nervous system tumor entity. J Neurooncol 2021; 153 (01) 109-120
  • 53 Reinhardt A, Stichel D, Schrimpf D. et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol 2018; 136 (02) 273-291
  • 54 Rudà R, Capper D, Waldman AD. et al. EANO - EURACAN - SNO guidelines on circumscribed astrocytic gliomas, glioneuronal, and neuronal tumors. Neuro-oncol 2022; 24 (12) 2015-2034
  • 55 Perkins SM, Mitra N, Fei W, Shinohara ET. Patterns of care and outcomes of patients with pleomorphic xanthoastrocytoma: a SEER analysis. J Neurooncol 2012; 110 (01) 99-104
  • 56 Ida CM, Rodriguez FJ, Burger PC. et al. Pleomorphic xanthoastrocytoma: natural history and long-term follow-up. Brain Pathol 2015; 25 (05) 575-586
  • 57 Kaley T, Touat M, Subbiah V. et al. BRAF inhibition in BRAF V600-mutant gliomas: results from the VE-BASKET study. J Clin Oncol 2018; 36 (35) 3477-3484
  • 58 Kata K, Rodriguez-Quintero JC, Arevalo OD. et al. BRAF/MEK dual inhibitors therapy in progressive and anaplastic pleomorphic xanthoastrocytoma: case series and literature review. J Natl Compr Canc Netw 2022; 20 (11) 1193-1202.e6
  • 59 Chen W, Soon YY, Pratiseyo PD. et al. Central nervous system neuroepithelial tumors with MN1-alteration: an individual patient data meta-analysis of 73 cases. Brain Tumor Pathol 2020; 37 (04) 145-153
  • 60 Janz C, Buhl R. Astroblastoma: report of two cases with unexpected clinical behavior and review of the literature. Clin Neurol Neurosurg 2014; 125: 114-124
  • 61 Chiang J, Harreld JH, Tinkle CL. et al. A single-center study of the clinicopathologic correlates of gliomas with a MYB or MYBL1 alteration. Acta Neuropathol 2019; 138 (06) 1091-1092
  • 62 Ellison DW, Hawkins C, Jones DTW. et al. cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAFV600E mutation. Acta Neuropathol 2019; 137 (04) 683-687
  • 63 Fabbri VP, Caporalini C, Asioli S, Buccoliero A. Paediatric-type diffuse low-grade gliomas: a clinically and biologically distinct group of tumours with a favourable outcome. Pathologica 2022; 114 (06) 410-421
  • 64 Kasper LH, Baker SJ. Invited review: emerging functions of histone H3 mutations in paediatric diffuse high-grade gliomas. Neuropathol Appl Neurobiol 2020; 46 (01) 73-85
  • 65 Sturm D, Witt H, Hovestadt V. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012; 22 (04) 425-437
  • 66 Jakacki RI, Cohen KJ, Buxton A. et al. Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: a report of the Children's Oncology Group ACNS0423 study. Neuro-oncol 2016; 18 (10) 1442-1450
  • 67 López-Pérez CA, Franco-Mojica X, Villanueva-Gaona R, Díaz-Alba A, Rodríguez-Florido MA, Navarro VG. Adult diffuse midline gliomas H3 K27-altered: review of a redefined entity. J Neurooncol 2022; 158 (03) 369-378
  • 68 Schulte JD, Buerki RA, Lapointe S. et al. Clinical, radiologic, and genetic characteristics of histone H3 K27M-mutant diffuse midline gliomas in adults. Neurooncol Adv 2020; 2 (01) vdaa142
  • 69 Picart T, Barritault M, Poncet D. et al. Characteristics of diffuse hemispheric gliomas, H3 G34-mutant in adults. Neurooncol Adv 2021; 3 (01) vdab061
  • 70 Crowell C, Mata-Mbemba D, Bennett J. et al. Systematic review of diffuse hemispheric glioma, H3 G34-mutant: outcomes and associated clinical factors. Neurooncol Adv 2022; 4 (01) vdac133
  • 71 Kurokawa R, Baba A, Kurokawa M. et al. Neuroimaging features of diffuse hemispheric glioma, H3 G34-mutant: a case series and systematic review. J Neuroimaging 2022; 32 (01) 17-27
  • 72 Hong L, Shi ZF, Li KK. et al. Molecular landscape of pediatric type IDH wildtype, H3 wildtype hemispheric glioblastomas. Lab Invest 2022; 102 (07) 731-740
  • 73 Korshunov A, Schrimpf D, Ryzhova M. et al. H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol 2017; 134 (03) 507-516
  • 74 Mezzacappa FM, Thorell W. Neuronal Brain Tumors. Treasure Island, FL:: StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022
  • 75 Stone TJ, Keeley A, Virasami A. et al. Comprehensive molecular characterisation of epilepsy-associated glioneuronal tumours. Acta Neuropathol 2018; 135 (01) 115-129
  • 76 Mallick S, Benson R, Melgandi W, Giridhar P, Rath GK. Impact of surgery, adjuvant treatment, and other prognostic factors in the management of anaplastic ganglioglioma. Childs Nerv Syst 2018; 34 (06) 1207-1213
  • 77 Reinhardt A, Pfister K, Schrimpf D. et al. Anaplastic ganglioglioma-a diagnosis comprising several distinct tumour types. Neuropathol Appl Neurobiol 2022; 48 (07) e12847
  • 78 Englot DJ, Han SJ, Berger MS, Barbaro NM, Chang EF. Extent of surgical resection predicts seizure freedom in low-grade temporal lobe brain tumors. Neurosurgery 2012; 70 (04) 921-928 , discussion 928
  • 79 Haydon DH, Dahiya S, Smyth MD, Limbrick DD, Leonard JR. Greater extent of resection improves ganglioglioma recurrence-free survival in children: a volumetric analysis. Neurosurgery 2014; 75 (01) 37-42
  • 80 Hu Y, Zhang H, Adilijiang A. et al. Seizure outcomes and prognostic factors in patients with gangliogliomas associated with epilepsy. Front Surg 2022; 9: 946201
  • 81 Vasiljevic A, François P, Loundou A. et al. Prognostic factors in central neurocytomas: a multicenter study of 71 cases. Am J Surg Pathol 2012; 36 (02) 220-227
  • 82 Chen YD, Li WB, Feng J, Qiu XG. Long-term outcomes of adjuvant radiotherapy after surgical resection of central neurocytoma. Radiat Oncol 2014; 9: 242
  • 83 Johnson MO, Kirkpatrick JP, Patel MP. et al. The role of chemotherapy in the treatment of central neurocytoma. CNS Oncol 2019; 8 (03) CNS41
  • 84 Samhouri L, Meheissen MAM, Ibrahimi AKH. et al. Impact of adjuvant radiotherapy in patients with central neurocytoma: a multicentric international analysis. Cancers (Basel) 2021; 13 (17) 4308
  • 85 Beland B, Tsang RY, Sutherland G. Unprecedented response to combination BRAF and MEK inhibitors in adult anaplastic ganglioglioma. J Neurooncol 2018; 137 (03) 667-669
  • 86 Berzero G, Bellu L, Baldini C. et al. Sustained tumor control with MAPK inhibition in BRAF V600-mutant adult glial and glioneuronal tumors. Neurology 2021; 97 (07) e673-e683
  • 87 Marks AM, Bindra RS, DiLuna ML. et al. Response to the BRAF/MEK inhibitors dabrafenib/trametinib in an adolescent with a BRAF V600E mutated anaplastic ganglioglioma intolerant to vemurafenib. Pediatr Blood Cancer 2018; 65 (05) e26969
  • 88 Rush S, Foreman N, Liu A. Brainstem ganglioglioma successfully treated with vemurafenib. J Clin Oncol 2013; 31 (10) e159-e160
  • 89 Shih KC, Shastry M, Williams JT. et al. Successful treatment with dabrafenib (GSK2118436) in a patient with ganglioglioma. J Clin Oncol 2014; 32 (29) e98-e100
  • 90 Gerstner ER, Pajtler KW. Ependymoma. Semin Neurol 2018; 38 (01) 104-111
  • 91 Rudà R, Bruno F, Pellerino A, Soffietti R. Ependymoma: evaluation and management updates. Curr Oncol Rep 2022; 24 (08) 985-993
  • 92 Ghasemi DR, Sill M, Okonechnikov K. et al. MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol 2019; 138 (06) 1075-1089
  • 93 Benesch M, Frappaz D, Massimino M. Spinal cord ependymomas in children and adolescents. Childs Nerv Syst 2012; 28 (12) 2017-2028
  • 94 Bertero L, Ricci AA, Tampieri C, Cassoni P, Modena P. Ependymomas. Pathologica 2022; 114 (06) 436-446
  • 95 Svoboda N, Bradac O, de Lacy P, Benes V. Intramedullary ependymoma: long-term outcome after surgery. Acta Neurochir (Wien) 2018; 160 (03) 439-447
  • 96 Pajtler KW, Mack SC, Ramaswamy V. et al. The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol 2017; 133 (01) 5-12
  • 97 Rudà R, Reifenberger G, Frappaz D. et al. EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro-oncol 2018; 20 (04) 445-456
  • 98 Central Nervous System Cancers. National Comprehensive Cancer Network. 2022 [updated September 29, 2022 ]. Accessed October 27, 2023 at: https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf
  • 99 Lötsch D, Kirchhofer D, Englinger B. et al. Targeting fibroblast growth factor receptors to combat aggressive ependymoma. Acta Neuropathol 2021; 142 (02) 339-360
  • 100 Louis DN, Perry A, Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131 (06) 803-820
  • 101 Cotter JA, Hawkins C. Medulloblastoma: WHO 2021 and beyond. Pediatr Dev Pathol 2022; 25 (01) 23-33
  • 102 Franceschi E, Seidel C, Sahm F, Pajtler KW, Hau P. How we treat medulloblastoma in adults. ESMO Open 2021; 6 (04) 100173
  • 103 Frappaz D, Faure-Conter C, Bonneville Levard A, Barritault M, Meyronet D, Sunyach MP. Medulloblastomas in adolescents and adults - can the pediatric experience be extrapolated?. Neurochirurgie 2021; 67 (01) 76-82
  • 104 Lazow MA, Palmer JD, Fouladi M, Salloum R. Medulloblastoma in the modern era: review of contemporary trials, molecular advances, and updates in management. Neurotherapeutics 2022; 19 (06) 1733-1751
  • 105 Coltin H, Sundaresan L, Smith KS. et al. Subgroup and subtype-specific outcomes in adult medulloblastoma. Acta Neuropathol 2021; 142 (05) 859-871
  • 106 Franceschi E, Giannini C, Furtner J. et al. Adult Medulloblastoma: updates on current management and future perspectives. Cancers (Basel) 2022; 14 (15) 3708
  • 107 Goschzik T, Zur Muehlen A, Doerner E. et al. Medulloblastoma in adults: cytogenetic phenotypes identify prognostic subgroups. J Neuropathol Exp Neurol 2021; 80 (05) 419-430
  • 108 Franceschi E, Hofer S, Brandes AA. et al. EANO-EURACAN clinical practice guideline for diagnosis, treatment, and follow-up of post-pubertal and adult patients with medulloblastoma. Lancet Oncol 2019; 20 (12) e715-e728
  • 109 Fang FY, Rosenblum JS, Ho WS, Heiss JD. New developments in the pathogenesis, therapeutic targeting, and treatment of pediatric medulloblastoma. Cancers (Basel) 2022; 14 (09) 2285
  • 110 Waszak SM, Northcott PA, Buchhalter I. et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol 2018; 19 (06) 785-798
  • 111 Warren KE, Vezina G, Poussaint TY. et al. Response assessment in medulloblastoma and leptomeningeal seeding tumors: recommendations from the Response Assessment in Pediatric Neuro-Oncology committee. Neuro-oncol 2018; 20 (01) 13-23
  • 112 Thompson EM, Hielscher T, Bouffet E. et al. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol 2016; 17 (04) 484-495
  • 113 Zhang N, Ouyang T, Kang H, Long W, Thomas B, Zhu S. Adult medulloblastoma: clinical characters, prognostic factors, outcomes and patterns of relapse. J Neurooncol 2015; 124 (02) 255-264
  • 114 Penas-Prado M, Theeler BJ, Cordeiro B. et al. Proceedings of the Comprehensive Oncology Network Evaluating Rare CNS Tumors (NCI-CONNECT) Adult Medulloblastoma Workshop. Neurooncol Adv 2020; 2 (01) vdaa097
  • 115 Cooney T, Lindsay H, Leary S, Wechsler-Reya R. Current studies and future directions for medulloblastoma: a review from the pacific pediatric neuro-oncology consortium (PNOC) disease working group. Neoplasia 2023; 35: 100861
  • 116 Michalski JM, Janss AJ, Vezina LG. et al. Children's oncology group phase III trial of reduced-dose and reduced-volume radiotherapy with chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 2021; 39 (24) 2685-2697
  • 117 Packer RJ, Gajjar A, Vezina G. et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 2006; 24 (25) 4202-4208
  • 118 Hwang EI, Kool M, Burger PC. et al. Extensive molecular and clinical heterogeneity in patients with histologically diagnosed CNS-PNET treated as a single entity: a report from the children's oncology group randomized ACNS0332 trial. J Clin Oncol 2018; 36 (34) JCO2017764720
  • 119 Tarbell NJ, Friedman H, Polkinghorn WR. et al. High-risk medulloblastoma: a pediatric oncology group randomized trial of chemotherapy before or after radiation therapy (POG 9031). J Clin Oncol 2013; 31 (23) 2936-2941
  • 120 Esbenshade AJ, Kocak M, Hershon L. et al. A phase II feasibility study of oral etoposide given concurrently with radiotherapy followed by dose intensive adjuvant chemotherapy for children with newly diagnosed high-risk medulloblastoma (protocol POG 9631): a report from the Children's Oncology Group. Pediatr Blood Cancer 2017; 64 (06) 10 .1002/pbc.26373
  • 121 Brandes AA, Franceschi E, Tosoni A, Blatt V, Ermani M. Long-term results of a prospective study on the treatment of medulloblastoma in adults. Cancer 2007; 110 (09) 2035-2041
  • 122 Kocakaya S, Beier CP, Beier D. Chemotherapy increases long-term survival in patients with adult medulloblastoma–a literature-based meta-analysis. Neuro-oncol 2016; 18 (03) 408-416
  • 123 Packer RJ, Sutton LN, Elterman R. et al. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg 1994; 81 (05) 690-698
  • 124 Yan H, Zabih V, Bartels U, Das S, Nathan P, Gupta S. Prognostic factors related to overall survival in adolescent and young adults with medulloblastoma: a systematic review. Neurooncol Adv 2022; 4 (01) vdac016
  • 125 Robinson GW, Orr BA, Wu G. et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol 2015; 33 (24) 2646-2654
  • 126 Kieran MW, Chisholm J, Casanova M. et al. Phase I study of oral sonidegib (LDE225) in pediatric brain and solid tumors and a phase II study in children and adults with relapsed medulloblastoma. Neuro-oncol 2017; 19 (11) 1542-1552
  • 127 Bromberg JE, Baumert BG, de Vos F. et al. Primary intracranial germ-cell tumors in adults: a practical review. J Neurooncol 2013; 113 (02) 175-183
  • 128 Frappaz D, Dhall G, Murray MJ. et al. EANO, SNO and Euracan consensus review on the current management and future development of intracranial germ cell tumors in adolescents and young adults. Neuro-oncol 2022; 24 (04) 516-527
  • 129 Gittleman H, Cioffi G, Vecchione-Koval T. et al. Descriptive epidemiology of germ cell tumors of the central nervous system diagnosed in the United States from 2006 to 2015. J Neurooncol 2019; 143 (02) 251-260
  • 130 Murray MJ, Bartels U, Nishikawa R, Fangusaro J, Matsutani M, Nicholson JC. Consensus on the management of intracranial germ-cell tumours. Lancet Oncol 2015; 16 (09) e470-e477
  • 131 Jennings MT, Gelman R, Hochberg F. Intracranial germ-cell tumors: natural history and pathogenesis. J Neurosurg 1985; 63 (02) 155-167
  • 132 Yeo KK, Nagabushan S, Dhall G, Abdelbaki MS. Primary central nervous system germ cell tumors in children and young adults: a review of controversies in diagnostic and treatment approach. Neoplasia 2023; 36: 100860
  • 133 Byun HK, Yoon HI, Cho J. et al. Optimization of intracranial germinoma treatment: radiotherapy alone with reduced volume and dose. Int J Radiat Oncol Biol Phys 2020; 108 (03) 657-666
  • 134 Bartels U, Onar-Thomas A, Patel SK. et al. Phase II trial of response-based radiation therapy for patients with localized germinoma: a Children's Oncology Group study. Neuro-oncol 2022; 24 (06) 974-983
  • 135 Calaminus G, Kortmann R, Worch J. et al. SIOP CNS GCT 96: final report of outcome of a prospective, multinational nonrandomized trial for children and adults with intracranial germinoma, comparing craniospinal irradiation alone with chemotherapy followed by focal primary site irradiation for patients with localized disease. Neuro-oncol 2013; 15 (06) 788-796
  • 136 Fonseca A, Faure-Conter C, Murray MJ. et al. Pattern of treatment failures in patients with central nervous system non-germinomatous germ cell tumors (CNS-NGGCT): a pooled analysis of clinical trials. Neuro-oncol 2022; 24 (11) 1950-1961
  • 137 Yeo KK, Burgers DE, Brodigan K. et al. Adolescent and young adult neuro-oncology: a comprehensive review. Neurooncol Pract 2021; 8 (03) 236-246