RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000018.xml
Facial Plast Surg 2024; 40(03): 331-335
DOI: 10.1055/s-0043-1777838
DOI: 10.1055/s-0043-1777838
Original Article
Nasal Breathing Assessment Using Computational Fluid Dynamics: An Update from the Rhinologic Perspective
Abstract
An objective assessment of nasal breathing is currently insufficiently achievable. The application of computational fluid dynamics for this purpose is increasingly gaining attention. However, the suggested specific frameworks can differ considerably. To the best of our knowledge, there is not yet a widely accepted clinical usage of computational fluid dynamics. In this article, selected aspects are addressed that might be crucial for future development and possible implementation of computational fluid dynamics in rhinology.
Keywords
computational fluid dynamics - statistical shape model - nasal breathing - flow field - wall shear stress - intranasal airflowPublikationsverlauf
Artikel online veröffentlicht:
10. Januar 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Bermüller C, Kirsche H, Rettinger G, Riechelmann H. Diagnostic accuracy of peak nasal inspiratory flow and rhinomanometry in functional rhinosurgery. Laryngoscope 2008; 118 (04) 605-610
- 2 Clement PA, Gordts F. Standardisation Committee on Objective Assessment of the Nasal Airway, IRS, and ERS. Consensus report on acoustic rhinometry and rhinomanometry. Rhinology 2005; 43 (03) 169-179
- 3 Ta NH, Gao J, Philpott C. A systematic review to examine the relationship between objective and patient-reported outcome measures in sinonasal disorders: recommendations for use in research and clinical practice. Int Forum Allergy Rhinol 2021; 11 (05) 910-923
- 4 Mo S, Gupta SS, Stroud A. et al. Nasal peak inspiratory flow in healthy and obstructed patients: systematic review and meta-analysis. Laryngoscope 2021; 131 (02) 260-267
- 5 Burgos MA, Sanmiguel-Rojas E, Del Pino C, Sevilla-García MA, Esteban-Ortega F. New CFD tools to evaluate nasal airflow. Eur Arch Otorhinolaryngol 2017; 274 (08) 3121-3128
- 6 Flowgy. Accessed September 30, 2023 at: https://www.flowgy.com
- 7 Zachow S, Muigg P, Hildebrandt T, Doleisch H, Hege HC. Visual exploration of nasal airflow. IEEE Trans Vis Comput Graph 2009; 15 (06) 1407-1414
- 8 Quadrio M, Pipolo C, Corti S. et al. Effects of CT resolution and radiodensity threshold on the CFD evaluation of nasal airflow. Med Biol Eng Comput 2016; 54 (2–3): 411-419
- 9 Hildebrandt T, Osman J, Goubergrits L. Numerical flow simulation: a new method for assessing nasal breathing. HNO 2016; 64 (08) 611-618
- 10 Hildebrandt T, Goubergrits L, Heppt WJ, Bessler S, Zachow S. Evaluation of the intranasal flow field through computational fluid dynamics. Facial Plast Surg 2013; 29 (02) 93-98
- 11 Hildebrandt T. Principles of modern septoplasty. In: Behrbohm H, Tardy EM. eds. Essentials of Septorhinoplasty. 2nd ed.. New York, NY: Thieme; 2016: 122-127
- 12 Hildebrandt T, Heppt WJ, Kertzscher U, Goubergrits L. The concept of rhinorespiratory homeostasis: a new approach to nasal breathing. Facial Plast Surg 2013; 29 (02) 85-92
- 13 Hildebrandt T. Das Konzept der Rhinorespiratorischen Homöostase—ein neuer theoretischer Ansatz für die Diskussion physiologischer und physikalischer Zusammenhänge bei der Nasenatmung [dissertation in German]. Freiburg im Breisgau, Germany: Albert-Ludwigs-Universität; 2011
- 14 Brüning J, Hildebrandt T, Heppt W. et al. Characterization of the airflow within an average geometry of the healthy human nasal cavity. Sci Rep 2020; 10 (01) 3755
- 15 Hildebrandt T, Heppt W. A novel principle of nasal breathing assessment. 2023 Accessed September 23, 2023 at: https://figshare.com
- 16 Bruintjes TD, van Olphen AF, Hillen B, Huizing EH. A functional anatomic study of the relationship of the nasal cartilages and muscles to the nasal valve area. Laryngoscope 1998; 108 (07) 1025-1032
- 17 Hildebrandt T, Brüning JJ, Schmidt NL. et al. The healthy nasal cavity-characteristics of morphology and related airflow based on a statistical shape model viewed from a surgeon's perspective. Facial Plast Surg 2019; 35 (01) 9-13
- 18 Proctor DF. Form and function in the upper airways and larynx. In: Fishman AP. ed. The Handbook of Physiology. Section 3: The Respiratory System. Vol. 3: Mechanics of Breathing, Part 1. Bethesda, MD: The American Physiological Society; 1986: 63-73
- 19 Bridger GP, Proctor DF. Maximum nasal inspiratory flow and nasal resistance. Ann Otol Rhinol Laryngol 1970; 79 (03) 481-488
- 20 Zhao K, Jiang J, Blacker K. et al. Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope 2014; 124 (03) 589-595
- 21 Elad D, Naftali S, Rosenfeld M, Wolf M. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol 2006; 100 (03) 1003-1010
- 22 Eccles R. The central rhythm of the nasal cycle. Acta Otolaryngol 1978; 86 (5–6): 464-468
- 23 Huizing EH, De Groot JAM. Functional Reconstructive Nasal Surgery. 1st ed.. Stuttgart: Thieme; 2003: 52