Semin Neurol 2024; 44(04): 459-470
DOI: 10.1055/s-0044-1787572
Review Article

Neurological Effects of Stimulants and Hallucinogens

Reece M. Hass
1   Department of Neurology, Mayo Clinic, Rochester, Minnesota
,
Derek Stitt
1   Department of Neurology, Mayo Clinic, Rochester, Minnesota
› Author Affiliations

Abstract

In this article, we will discuss the history, pharmacodynamics, and neurotoxicity of psychostimulants and hallucinogens. The drugs discussed are widely used and have characteristic toxidromes and potential for neurological injuries with which the practicing clinician should be familiar. Psychostimulants are a class of drugs that includes cocaine, methamphetamine/amphetamines, and cathinones, among others, which produce a crescendoing euphoric high. Seizures, ischemic and hemorrhagic strokes, rhabdomyolysis, and a variety of movement disorders are commonly encountered in this class. Hallucinogens encompass a broad class of drugs, in which the user experiences hallucinations, altered sensorium, distorted perception, and cognitive dysfunction. The experience can be unpredictable and dysphoric, creating a profound sense of anxiety and panic in some cases. Recognizing the associated neurotoxicities and understanding the appropriate management is critical in caring for these patient populations. Several of these agents are not detectable by standard clinical laboratory analysis, making identification and diagnosis an even greater challenge.



Publication History

Article published online:
18 June 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lappin JM, Sara GE. Psychostimulant use and the brain. Addiction 2019; 114 (11) 2065-2077
  • 2 Markowitz JS, Melchert PW. The pharmacokinetics and pharmacogenomics of psychostimulants. Child Adolesc Psychiatr Clin N Am 2022; 31 (03) 393-416
  • 3 Lee MR. The history of Ephedra (ma-huang). J R Coll Physicians Edinb 2011; 41 (01) 78-84
  • 4 Heal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine, past and present–a pharmacological and clinical perspective. J Psychopharmacol 2013; 27 (06) 479-496
  • 5 Rasmussen N. America's first amphetamine epidemic 1929-1971: a quantitative and qualitative retrospective with implications for the present. Am J Public Health 2008; 98 (06) 974-985
  • 6 Bett WR. Benzedrine sulphate in clinical medicine; a survey of the literature. Postgrad Med J 1946; 22 (250) 205-218
  • 7 Vearrier D, Greenberg MI, Miller SN, Okaneku JT, Haggerty DA. Methamphetamine: history, pathophysiology, adverse health effects, current trends, and hazards associated with the clandestine manufacture of methamphetamine. Dis Mon 2012; 58 (02) 38-89
  • 8 Rasmussen N. Amphetamine-type stimulants: the early history of their medical and non-medical uses. Int Rev Neurobiol 2015; 120: 9-25
  • 9 Jayanthi S, Daiwile AP, Cadet JL. Neurotoxicity of methamphetamine: Main effects and mechanisms. Exp Neurol 2021; 344: 113795
  • 10 Expert Committee On Addiction-Producing Drugs. Seventh Report. World Health Organization Technical Report Series No. 116.. Accessed March 19, 2023 at: https://iris.who.int/handle/10665/40371
  • 11 National Institute on Drug Abuse and Center for Disease Control and Prevention. Drug Overdose Death Rates; 2023 . Accessed September 27, 2023 at: https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates
  • 12 Steingard R, Taskiran S, Connor DF, Markowitz JS, Stein MA. New formulations of stimulants: an update for clinicians. J Child Adolesc Psychopharmacol 2019; 29 (05) 324-339
  • 13 Elia J, Easley C, Kirkpatrick P. Lisdexamfetamine dimesylate. Nat Rev Drug Discov 2007; 6 (05) 343-344
  • 14 Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 2005; 75 (06) 406-433
  • 15 Abbruscato TJ, Trippier PC. DARK Classics in Chemical Neuroscience: Methamphetamine. ACS Chem Neurosci 2018; 9 (10) 2373-2378
  • 16 Faraone SV. The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87: 255-270
  • 17 Gebissa E. Khat in the Horn of Africa: historical perspectives and current trends. J Ethnopharmacol 2010; 132 (03) 607-614
  • 18 Simmons SJ, Leyrer-Jackson JM, Oliver CF. et al. DARK Classics in Chemical Neuroscience: Cathinone-derived psychostimulants. ACS Chem Neurosci 2018; 9 (10) 2379-2394
  • 19 Baumann MH, Walters HM, Niello M, Sitte HH. Neuropharmacology of synthetic cathinones. Handb Exp Pharmacol 2018; 252: 113-142
  • 20 Kelly JP. Cathinone derivatives: a review of their chemistry, pharmacology and toxicology. Drug Test Anal 2011; 3 (7-8): 439-453
  • 21 Capriola M. Synthetic cathinone abuse. Clin Pharmacol 2013; 5: 109-115
  • 22 Karch SB. The history of cocaine toxicity. Hum Pathol 1989; 20 (11) 1037-1039
  • 23 Drake LR, Scott PJH. DARK Classics in Chemical Neuroscience: Cocaine. ACS Chem Neurosci 2018; 9 (10) 2358-2372
  • 24 Ruetsch YA, Böni T, Borgeat A. From cocaine to ropivacaine: the history of local anesthetic drugs. Curr Top Med Chem 2001; 1 (03) 175-182
  • 25 Redman M. Cocaine: what is the crack? A brief history of the use of cocaine as an anesthetic. Anesth Pain Med 2011; 1 (02) 95-97
  • 26 Dunlap E, Johnson BD. The setting for the crack era: macro forces, micro consequences (1960-1992). J Psychoactive Drugs 1992; 24 (04) 307-321
  • 27 Substance Abuse and Mental Health Services Administration. Key substance use and mental health indicators in the United States: Results from the 2021 National Survey on Drug Use and Health. 2022 ; Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration (HHS Publication No. PEP22-07-01-005, NSDUH Series H-57). Accessed August 27, 2023 at: https://www.samhsa.gov/data/report/2021-nsduh-annual-national-report
  • 28 Westover AN, McBride S, Haley RW. Stroke in young adults who abuse amphetamines or cocaine: a population-based study of hospitalized patients. Arch Gen Psychiatry 2007; 64 (04) 495-502
  • 29 Lappin JM, Darke S, Farrell M. Stroke and methamphetamine use in young adults: a review. J Neurol Neurosurg Psychiatry 2017; 88 (12) 1079-1091
  • 30 Brown JWL, Dunne JW, Fatovich DM, Lee J, Lawn ND. Amphetamine-associated seizures: clinical features and prognosis. Epilepsia 2011; 52 (02) 401-404
  • 31 Isoardi KZ, Ayles SF, Harris K, Finch CJ, Page CB. Methamphetamine presentations to an emergency department: management and complications. Emerg Med Australas 2019; 31 (04) 593-599
  • 32 Weng TI, Chen HY, Chin LW. et al. Comparison of clinical characteristics between meth/amphetamine and synthetic cathinone users presented to the emergency department. Clin Toxicol (Phila) 2022; 60 (08) 926-932
  • 33 Waldman W, Kabata PM, Dines AM. et al; Euro-DEN Research Group. Rhabdomyolysis related to acute recreational drug toxicity-a Euro-DEN study. PLoS One 2021; 16 (03) e0246297
  • 34 Harrington H, Heller HA, Dawson D, Caplan L, Rumbaugh C. Intracerebral hemorrhage and oral amphetamine. Arch Neurol 1983; 40 (08) 503-507
  • 35 Buxton N, McConachie NS. Amphetamine abuse and intracranial haemorrhage. J R Soc Med 2000; 93 (09) 472-477
  • 36 Westover AN, Halm EA. Do prescription stimulants increase the risk of adverse cardiovascular events?: A systematic review. BMC Cardiovasc Disord 2012; 12: 41
  • 37 Liu H, Feng W, Zhang D. Association of ADHD medications with the risk of cardiovascular diseases: a meta-analysis. Eur Child Adolesc Psychiatry 2019; 28 (10) 1283-1293
  • 38 Andrade C. Methylphenidate and the risk of new-onset seizures. J Clin Psychiatry 2020; 81 (04) 3586
  • 39 Man KKC, Lau WCY, Coghill D. et al. Association between methylphenidate treatment and risk of seizure: a population-based, self-controlled case-series study. Lancet Child Adolesc Health 2020; 4 (06) 435-443
  • 40 Santoro JD, Black JM, Hamm LL. A case of rhabdomyolysis in the presence of multiple risk factors and dextroamphetamine use. Am J Med Sci 2013; 345 (06) 494-496
  • 41 Huang D, Dluzneski S, Hughes M, Elbadri S, Ganti L. Dexmethylphenidate-induced rhabdomyolysis by interaction with aromatase inhibitor. Cureus 2022; 14 (08) e27988
  • 42 Cheng YC, Ryan KA, Qadwai SA. et al. Cocaine use and risk of ischemic stroke in young adults. Stroke 2016; 47 (04) 918-922
  • 43 Pascual-Leone A, Dhuna A, Altafullah I, Anderson DC. Cocaine-induced seizures. Neurology 1990; 40 (3 Pt 1): 404-407
  • 44 Choy-Kwong M, Lipton RB. Seizures in hospitalized cocaine users. Neurology 1989; 39 (03) 425-427
  • 45 Sordo L, Indave BI, Degenhardt L. et al. A systematic review of evidence on the association between cocaine use and seizures. Drug Alcohol Depend 2013; 133 (03) 795-804
  • 46 Tormoehlen LM, Blatsioris AD, Moser EAS. et al. Disparities and guideline adherence in drugs of abuse screening in intracerebral hemorrhage. Neurology 2017; 88 (03) 252-258
  • 47 Bentur Y, Bloom-Krasik A, Raikhlin-Eisenkraft B. Illicit cathinone (“Hagigat”) poisoning. Clin Toxicol (Phila) 2008; 46 (03) 206-210
  • 48 Boshuisen K, Arends JE, Rutgers DR, Frijns CJM. A young man with hemiplegia
  • 49 Mufti Z, Shi P, Mufti H, Hasan S. Posterior Reversible Encephalopathy Syndrome (PRES), Hypoxic Injury and Stroke: A Sequelae of Bath Salt Inhalation? (P2–5.012). Neurology 2023; 100: 2862
  • 50 Tekulve K, Alexander A, Tormoehlen L. Seizures associated with synthetic cathinone exposures in the pediatric population. Pediatr Neurol 2014; 51 (01) 67-70
  • 51 Beck O, Franzén L, Bäckberg M, Signell P, Helander A. Toxicity evaluation of α-pyrrolidinovalerophenone (α-PVP): results from intoxication cases within the STRIDA project. Clin Toxicol (Phila) 2016; 54 (07) 568-575
  • 52 Young D, Scoville WB. Paranoid psychosis in narcolepsy and the possible danger of benzedrine treatment. Med Clin North Am 1938; 22 (03) 637-646
  • 53 Norman J, Shea JT. Acute hallucinosis as a complication of addiction to amphetamine sulfate: report of a case. N Engl J Med 1945; 233 (09) 270-271
  • 54 Davis GG, Swalwell CI. The incidence of acute cocaine or methamphetamine intoxication in deaths due to ruptured cerebral (berry) aneurysms. J Forensic Sci 1996; 41 (04) 626-628
  • 55 Zhu Z, Osman S, Stradling D, Shafie M, Yu W. Clinical characteristics and outcomes of methamphetamine-associated versus non-methamphetamine intracerebral hemorrhage. Sci Rep 2020; 10 (01) 6375
  • 56 Younger DS. Cerebral vasculitis associated with drug abuse. Curr Opin Rheumatol 2021; 33 (01) 24-33
  • 57 Citron BP, Halpern M, McCarron M. et al. Necrotizing angiitis associated with drug abuse. N Engl J Med 1970; 283 (19) 1003-1011
  • 58 Ho EL, Josephson SA, Lee HS, Smith WS. Cerebrovascular complications of methamphetamine abuse. Neurocrit Care 2009; 10 (03) 295-305
  • 59 Puac-Polanco P, Rovira À, Shah LM, Wiggins RH, Rivas Rodriguez F, Torres C. Imaging of drug-related vasculopathy. Neuroimaging Clin N Am 2024; 34 (01) 113-128
  • 60 Di Lazzaro V, Restuccia D, Oliviero A. et al. Ischaemic myelopathy associated with cocaine: clinical, neurophysiological, and neuroradiological features. J Neurol Neurosurg Psychiatry 1997; 63 (04) 531-533
  • 61 de Boysson H, Parienti JJ, Mawet J. et al. Primary angiitis of the CNS and reversible cerebral vasoconstriction syndrome: a comparative study. Neurology 2018; 91 (16) e1468-e1478
  • 62 Kalladka D, Siddiqui A, Tyagi A, Newman E. Reversible cerebral vasoconstriction syndrome secondary to caffeine withdrawal. Scott Med J 2018; 63 (01) 22-24
  • 63 Chattha N, Webb T, Hargroves D, Balogun I, Bertoni M. Reversible cerebral vasoconstriction syndrome after sudden caffeine withdrawal. Br J Hosp Med (Lond) 2019; 80 (12) 730-731
  • 64 Kaminski RM, Núñez-Taltavull JF, Budziszewska B. et al. Effects of cocaine-kindling on the expression of NMDA receptors and glutamate levels in mouse brain. Neurochem Res 2011; 36 (01) 146-152
  • 65 Lama M, Shannon S, Davin Q. Methamphetamine intoxication encephalopathy associated with hyperammonemia. Psychosomatics 2016; 57 (03) 325-329
  • 66 Abbasi Jannatabadi N, Fayyazi Bordbar MR, Etemad L, Eizadi-Mood N, Jomehpour H, Moshiri M. Methamphetamine-associated hyperammonemic encephalopathy: case reports. J Clin Psychopharmacol 2022; 42 (01) 92-94
  • 67 Rabbany JM, Fitzgerald K, Bowman J, Dong F, Neeki MM. Methamphetamine-induced encephalopathy in the absence of hyperammonemia. BMC Psychiatry 2023; 23 (01) 276
  • 68 Potvin S, Stavro K, Rizkallah E, Pelletier J. Cocaine and cognition: a systematic quantitative review. J Addict Med 2014; 8 (05) 368-376
  • 69 Verdejo-Garcia A, Rubenis AJ. Cognitive deficits in people with stimulant use disorders. In: Cognition and Addiction. Elsevier; 2020: 155-163
  • 70 Wang GJ, Volkow ND, Chang L. et al. Partial recovery of brain metabolism in methamphetamine abusers after protracted abstinence. Am J Psychiatry 2004; 161 (02) 242-248
  • 71 Salo R, Nordahl TE, Galloway GP, Moore CD, Waters C, Leamon MH. Drug abstinence and cognitive control in methamphetamine-dependent individuals. J Subst Abuse Treat 2009; 37 (03) 292-297
  • 72 Richards JR, Wang CG, Fontenette RW, Stuart RP, McMahon KF, Turnipseed SD. Rhabdomyolysis, methamphetamine, amphetamine and MDMA use: associated factors and risks. J Dual Diagn 2020; 16 (04) 429-437
  • 73 Iftikhar MH, Dar AY, Haw A. Cocaine-induced rhabdomyolysis and compartment syndrome. BMJ Case Rep 2022; 15 (05) e249413
  • 74 Callaghan RC, Cunningham JK, Sykes J, Kish SJ. Increased risk of Parkinson's disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend 2012; 120 (1-3): 35-40
  • 75 Tripathi R, Saber H, Chauhan V, Tripathi K, Factor S. Parkinson disease from long term drug abuse: meta-analysis of amphetamine/methamphetamine and Parkinson Disease (P6.079). Neurology 2018; 90 (15 supplement): P6.079
  • 76 Dhopesh VP, Yagnik PM, Weddington WW. Can cocaine abuse cause parkinsonism?. Am J Addict 1997; 6 (02) 177-179
  • 77 Stepens A, Logina I, Liguts V. et al. A Parkinsonian syndrome in methcathinone users and the role of manganese. N Engl J Med 2008; 358 (10) 1009-1017
  • 78 Asser A, Taba P. Psychostimulants and movement disorders. Front Neurol 2015; 6: 75
  • 79 Sperling LS, Horowitz JL. Methamphetamine-induced choreoathetosis and rhabdomyolysis. Ann Intern Med 1994; 121 (12) 986
  • 80 Rhee KJ, Albertson TE, Douglas JC. Choreoathetoid disorder associated with amphetamine-like drugs. Am J Emerg Med 1988; 6 (02) 131-133
  • 81 Kanazawa I, Kimura M, Murata M, Tanaka Y, Cho F. Choreic movements in the macaque monkey induced by kainic acid lesions of the striatum combined with L-dopa. Pharmacological, biochemical and physiological studies on neural mechanisms. Brain 1990; 113 (Pt 2): 509-535
  • 82 Daras M, Koppel BS, Atos-Radzion E. Cocaine-induced choreoathetoid movements ('crack dancing'). Neurology 1994; 44 (04) 751-752
  • 83 Buffum JC, Shulgin AT. Overdose of 2.3 grams of intravenous methamphetamine: case, analysis and patient perspective. J Psychoactive Drugs 2001; 33 (04) 409-412
  • 84 Scharf D. Opsoclonus-myoclonus following the intranasal usage of cocaine. J Neurol Neurosurg Psychiatry 1989; 52 (12) 1447-1448
  • 85 Fines RE, Brady WJ, DeBehnke DJ. Cocaine-associated dystonic reaction. Am J Emerg Med 1997; 15 (05) 513-515
  • 86 Catalano G, Catalano MC, Rodriguez R. Dystonia associated with crack cocaine use. South Med J 1997; 90 (10) 1050-1052
  • 87 Brust JCM. Substance abuse and movement disorders. Mov Disord 2010; 25 (13) 2010-2020
  • 88 Rusyniak DE. Neurologic manifestations of chronic methamphetamine abuse. Psychiatr Clin North Am 2013; 36 (02) 261-275
  • 89 Callaghan RC, Cunningham JK, Sajeev G, Kish SJ. Incidence of Parkinson's disease among hospital patients with methamphetamine-use disorders. Mov Disord 2010; 25 (14) 2333-2339
  • 90 Sanchez A, Malaty IA, Khanna A. et al. Bilateral basal ganglia necrosis secondary to methamphetamine. Mov Disord Clin Pract (Hoboken) 2018; 5 (05) 555-556
  • 91 Hiesgen J, Badenhorst J. Lentiform fork sign on magnetic resonance imaging after methamphetamine and alcohol misuse. JAMA Neurol 2023; 80 (06) 644-645
  • 92 Sikk K, Haldre S, Aquilonius SM, Taba P. Manganese-induced parkinsonism due to ephedrone abuse. Parkinsons Dis 2011; 2011: 865319
  • 93 Thompson PM, Hayashi KM, Simon SL. et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 2004; 24 (26) 6028-6036
  • 94 Alaee A, Zarghami M, Farnia S, Khademloo M, Khoddad T. Comparison of brain white matter hyperintensities in methamphetamine and methadone dependent patients and healthy controls. Iran J Radiol 2014; 11 (02) e14275
  • 95 Bartzokis G, Goldstein IB, Hance DB. et al. The incidence of T2-weighted MR imaging signal abnormalities in the brain of cocaine-dependent patients is age-related and region-specific. AJNR Am J Neuroradiol 1999; 20 (09) 1628-1635
  • 96 Beheshti I. Cocaine destroys gray matter brain cells and accelerates brain aging. Biology (Basel) 2023; 12 (05) 752
  • 97 Sayadi L, Laub D. Levamisole-induced vasculitis. Eplasty 2018; 18: ic5
  • 98 Drug Enforcement Administration. “National Drug Threat Assessment 2017, October 2017 edn.”. Springfield, VA: US Drug Enforcement Administration; 2017
  • 99 Mutch RS, Hutson PR. Levamisole in the adjuvant treatment of colon cancer. Clin Pharm 1991; 10 (02) 95-109
  • 100 Vosoughi R, Schmidt BJ. Multifocal leukoencephalopathy in cocaine users: a report of two cases and review of the literature. BMC Neurol 2015; 15 (01) 208
  • 101 Yan R, Wu Q, Ren J. et al. Clinical features and magnetic resonance image analysis of 15 cases of demyelinating leukoencephalopathy induced by levamisole. Exp Ther Med 2013; 6 (01) 71-74
  • 102 Fominykh V, Averchenkov D, Volik A. et al. Levamisole-associated multifocal inflammatory encephalopathy: clinical and MRI characteristics, and diagnostic algorithm. Mult Scler Relat Disord 2023; 69: 104418
  • 103 Dy IA, Wiernik PH. Cocaine-levamisole thrombotic vasculopathy. Semin Thromb Hemost 2012; 38 (08) 780-782
  • 104 Kramer CL, Wetzel DR, Wijdicks EFM. Devastating delayed leukoencephalopathy associated with bath salt inhalation. Neurocrit Care 2016; 24 (03) 454-458
  • 105 Kim K, Che T, Panova O. et al. Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell 2020; 182 (06) 1574-1588.e19
  • 106 American Society for Pharmacology and Experimental Therapeutics. Correction to: “Psychedelics”. Pharmacol Rev 2016; 68 (02) 356
  • 107 Sarkar S, Bhatia G, Dhawan A. Clinical practice guidelines for assessment and management of patients with substance intoxication presenting to the emergency department. Indian J Psychiatry 2023; 65 (02) 196-211
  • 108 Geiger HA, Wurst MG, Daniels RN. DARK Classics in Chemical Neuroscience: Psilocybin. ACS Chem Neurosci 2018; 9 (10) 2438-2447
  • 109 Sharma P, Nguyen QA, Matthews SJ. et al. Psilocybin history, action and reaction: a narrative clinical review. J Psychopharmacol 2023; 37 (09) 849-865
  • 110 Daniel J, Haberman M. Clinical potential of psilocybin as a treatment for mental health conditions. Ment Health Clin 2018; 7 (01) 24-28
  • 111 Passie T, Halpern JH, Stichtenoth DO, Emrich HM, Hintzen A. The pharmacology of lysergic acid diethylamide: a review. CNS Neurosci Ther 2008; 14 (04) 295-314
  • 112 Richert L, Dyck E. Psychedelic crossings: American mental health and LSD in the 1970s. Med Humanit 2020; 46 (03) 184-191
  • 113 Nichols DE. Dark Classics in Chemical Neuroscience: Lysergic acid diethylamide (LSD). ACS Chem Neurosci 2018; 9 (10) 2331-2343
  • 114 Cassels BK, Sáez-Briones P. Dark Classics in Chemical Neuroscience: Mescaline. ACS Chem Neurosci 2018; 9 (10) 2448-2458
  • 115 Bender E. Finding medical value in mescaline. Nature 2022; 609 (7929) S90-S91
  • 116 Vamvakopoulou IA, Narine KAD, Campbell I, Dyck JRB, Nutt DJ. Mescaline: The forgotten psychedelic. Neuropharmacology 2023; 222: 109294
  • 117 Dinis-Oliveira RJ, Pereira CL, da Silva DD. Pharmacokinetic and pharmacodynamic aspects of peyote and mescaline: clinical and forensic repercussions. Curr Mol Pharmacol 2019; 12 (03) 184-194
  • 118 Maia LO, Daldegan-Bueno D, Wießner I, Araujo DB, Tófoli LF. Ayahuasca's therapeutic potential: What we know - and what not. Eur Neuropsychopharmacol 2023; 66: 45-61
  • 119 Cameron LP, Olson DE. Dark Classics in Chemical Neuroscience: N, N-Dimethyltryptamine (DMT). ACS Chem Neurosci 2018; 9 (10) 2344-2357
  • 120 Dos Santos RG, Bouso JC, Hallak JEC. Ayahuasca, dimethyltryptamine, and psychosis: a systematic review of human studies. Ther Adv Psychopharmacol 2017; 7 (04) 141-157
  • 121 Mion G. History of anaesthesia: the ketamine story - past, present and future. Eur J Anaesthesiol 2017; 34 (09) 571-575
  • 122 Pribish A, Wood N, Kalava A. A review of nonanesthetic uses of ketamine. Anesthesiol Res Pract 2020; 2020: 5798285
  • 123 Drug Enforcement Administration. Diversion Control Division. Ketamine; 2023: 1 . Accessed May 23, 2024 at: https://www.deadiversion.usdoj.gov/drug_chem_info/ketamine.pdf
  • 124 Zanos P, Moaddel R, Morris PJ. et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev 2018; 70 (03) 621-660
  • 125 Bey T, Patel A. Phencyclidine intoxication and adverse effects: a clinical and pharmacological review of an illicit drug. Cal J Emerg Med 2007; 8 (01) 9-14
  • 126 Randhawa G, Bodenham A. The increasing recreational use of nitrous oxide: history revisited. Br J Anaesth 2016; 116 (03) 321-324
  • 127 Sanders RD, Weimann J, Maze M. Biologic effects of nitrous oxide: a mechanistic and toxicologic review. Anesthesiology 2008; 109 (04) 707-722
  • 128 Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 2004; 65 (02) 443-452
  • 129 Simonsson O, Goldberg SB, Chambers R, Osika W, Long DM, Hendricks PS. Prevalence and associations of classic psychedelic-related seizures in a population-based sample. Drug Alcohol Depend 2022; 239: 109586
  • 130 Umemura Y, Andrew T, Jacobs V. et al. Fatal outcome of status epilepticus, hyperthermia, rhabdomyolysis, multi-organ failure, and cerebral edema after 25I-NBOMe ingestion (P1.342). Neurology 2014; 82 (10 supplement): P1.342
  • 131 Halberstadt AL. Pharmacology and toxicology of N-Benzylphenethylamine (“NBOMe”) hallucinogens. Curr Top Behav Neurosci 2017; 32: 283-311
  • 132 Malcolm B, Thomas K. Serotonin toxicity of serotonergic psychedelics. Psychopharmacology (Berl) 2022; 239 (06) 1881-1891
  • 133 Abrams SK, Rabinovitch BS, Zafar R. et al. Persons with spinal cord injury report peripherally dominant serotonin-like syndrome after use of serotonergic psychedelics. Neurotrauma Rep 2023; 4 (01) 543-550
  • 134 Soriano SG. Neurotoxicity of ketamine: known unknowns. Crit Care Med 2012; 40 (08) 2518-2519
  • 135 Journey JD, Bentley TP. Phencyclidine Toxicity. StatPearls Publishing; 2023. . Accessed September 22, 2023 at: http://www.ncbi.nlm.nih.gov/books/NBK507865/
  • 136 McCarron MM, Schulze BW, Thompson GA, Conder MC, Goetz WA. Acute phencyclidine intoxication: incidence of clinical findings in 1,000 cases. Ann Emerg Med 1981; 10 (05) 237-242
  • 137 Tahir H, Daruwalla V. Phencyclidine induced oculogyric crisis responding well to conventional treatment. Case Rep Emerg Med 2015; 2015: 506301
  • 138 Gao H, Li W, Ren J, Dong X, Ma Y, Zheng D. Clinical and MRI differences between patients with subacute combined degeneration of the spinal cord related vs. unrelated to recreational nitrous oxide use: a retrospective study. Front Neurol 2021; 12: 626174
  • 139 Brunt TM, van den Brink W, van Amsterdam J. Mechanisms involved in the neurotoxicity and abuse liability of nitrous oxide: a narrative review. Int J Mol Sci 2022; 23 (23) 14747
  • 140 Li HT, Chu CC, Chang KH. et al. Clinical and electrodiagnostic characteristics of nitrous oxide-induced neuropathy in Taiwan. Clin Neurophysiol 2016; 127 (10) 3288-3293