RSS-Feed abonnieren

DOI: 10.1055/s-0044-1791706
Remineralizing Potential of Natural Hydroxyapatite from Snakehead (Channa striata) Fish Bone on Remineralization of Primary Teeth Enamel: An In Vitro Study
Funding None.

Abstract
Objective This study aimed to investigate the effect of hydroxyapatite from snakehead (Channa striata) fish bone on the surface hardness of the enamel of the primary teeth.
Materials and Methods Twenty-six primary maxillary incisors were mounted on self-cured acrylic resin, divided into two groups, and demineralized. Remineralization was performed using hydroxyapatite paste synthesized from C. striata fish bone by the precipitation method. The case group was subjected to 15% hydroxyapatite paste and subsequently submerged in artificial saliva, while the control group was only exposed to artificial saliva. Enamel hardness was measured by the Vickers hardness tester after 7 days of treatment. The statistical analysis used in this research was an independent t-test.
Results The case group had a surface hardness of 356.192 ± 25.218, and the control group had a surface hardness of 269.686 ± 22.931. Statistical tests showed a significant difference between the case and control groups.
Conclusion Hydroxyapatite paste from snakehead (C. striata) fishbone stimulates remineralization of primary teeth, as evidenced by an increase in the enamel surface hardness of the teeth.
Publikationsverlauf
Artikel online veröffentlicht:
08. November 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Grohe B, Mittler S. Advanced non-fluoride approaches to dental enamel remineralization: the next level in enamel repair management. Biomater Biosyst 2021; 4: 100029
- 2 Shaik I, Dasari B, Shaik A. et al. Functional role of inorganic trace elements on enamel and dentin formation: a review. J Pharm Bioallied Sci 2021; 13 (6, Suppl 2): S952-S956
- 3 Chen L, Al-Bayatee S, Khurshid Z, Shavandi A, Brunton P, Ratnayake J. Hydroxyapatite in oral care products: a review. Materials (Basel) 2021; 14 (17) 4865
- 4 O'Hagan-Wong K, Enax J, Meyer F, Ganss B. The use of hydroxyapatite toothpaste to prevent dental caries. Odontology 2022; 110 (02) 223-230
- 5 Moradian-Oldak J. Protein-mediated enamel mineralization. Front Biosci (Landmark Ed) 2012; 17 (06) 1996-2023
- 6 Achmad H, Djais A, Hatta LI. et al. The impact of using fluoride in pediatric dentistry: a systematic review. Ann Rom Soc Cell Biol 2021; 25: 2816-2839
- 7 Mathirat A, Dalavi PA, Prabhu A. et al. Remineralizing potential of natural nano-hydroxyapatite obtained from Epinephelus chlorostigma in artificially induced early enamel lesion: an in vitro study. Nanomaterials (Basel) 2022; 12 (22) 3993
- 8 Enax J, Fabritius HO, Fabritius-Vilpoux K, Amaechi BT, Meyer F. Modes of action and clinical efficacy of particulate hydroxyapatite in preventive oral health care: state of the art. Open Dent J 2019; 13 (01) 274-287
- 9 Limeback H, Enax J, Meyer F. Biomimetic hydroxyapatite and caries prevention: a systematic review and meta-analysis. Can J Dent Hyg 2021; 55 (03) 148-159
- 10 Ionescu AC, Degli Esposti L, Iafisco M, Brambilla E. Dental tissue remineralization by bioactive calcium phosphate nanoparticles formulations. Sci Rep 2022; 12 (01) 5994
- 11 Sudradjat H, Meyer F, Loza K, Epple M, Enax J. In vivo effects of a hydroxyapatite-based oral care gel on the calcium and phosphorus levels of dental plaque. Eur J Dent 2020; 14 (02) 206-211
- 12 Khurshid Z, Alfarhan MFA, Bayan Y. et al. Development, physicochemical characterization and in-vitro biocompatibility study of dromedary camel dentine derived hydroxyapatite for bone repair. PeerJ 2023; 11: e15711
- 13 Khurshid Z, Alfarhan MF, Mazher J. et al. Extraction of hydroxyapatite from camel bone for bone tissue engineering application. Molecules 2022; 27 (22) 7946
- 14 Khurshid Z, Alqurashi H, Ashi H, Gen Dent EJ. Advancing environmental sustainability in dentistry and oral health. Eur J Gen Dent 2024; 13: 264-268
- 15 Grose J, Burns L, Mukonoweshuro R. et al. Developing sustainability in a dental practice through an action research approach. Br Dent J 2018; 225 (05) 409-413
- 16 Hossain MS, Uddin MN, Sarkar S, Ahmed S. Crystallographic dependency of waste cow bone, hydroxyapatite, and β-tricalcium phosphate for biomedical application. J Saudi Chem Soc 2022; 26 (06) 101559
- 17 Terzioğlu P, Öğüt H, Kalemtaş A. Natural calcium phosphates from fish bones and their potential biomedical applications. Mater Sci Eng C 2018; 91: 899-911
- 18 Anggresani L, Sari YN. , Rahmadevi. Hydroxyapatite (HAp) from tenggiri fish bones as abrasive material in toothpaste formula. J Kimia Valensi 2021; 7 (01) 1-9
- 19 Maulidah, Dwipura Hasbullah I, Uli Arta Panjaitan F. Biocompability test of Haruan fish (Channa striata) bone hydroxyapatite to fibroblast cell as periodontal pocket therapy (In vitro study on BHK-21 fibroblast cell with hydroxyapatite of Haruan fish bone (Channa striata) as bone graft material). Dentino J Kedokteran Gigi 2018; 3 (02) 150-155
- 20 Shi P, Liu M, Fan F, Yu C, Lu W, Du M. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater Sci Eng C 2018; 90: 706-712
- 21 Surya P, Nithin A, Sundaramanickam A, Sathish M. Synthesis and characterization of nano-hydroxyapatite from Sardinella longiceps fish bone and its effects on human osteoblast bone cells. J Mech Behav Biomed Mater 2021; 119: 104501
- 22 Muryati M, Loekitowati Hariani P, Said M. Preparation and characterization nanoparticle calcium oxide from snakehead fish bone using ball milling method. Indones J Fundamental Appl Chem 2019; 4 (03) 111-115
- 23 Herpandi, Hanif I, Widiastuti I, Sudirman S. Hydroxyapatite characteristics from snakehead fish (Channa striata) bone via alkali treatment followed by calcination method. Trop J Nat Prod Res 2024; 8 (02) 6147-6151
- 24 Hariani PL, Muryati M, Said M, Salni S. Synthesis of nano-hydroxyapatite from snakehead (Channa striata) fish bone and its antibacterial properties. Key Eng Mater 2020; 840: 293-299
- 25 Dewi N, Rahmadella A, Hatta I, Apriasari ML, Putri KDT. Antibacterial activity of nano-hydroxyapatite paste of snakehead fish bone against S. mutans: an in vitro study. Padjadjaran J Dent 2024; 36 (01) 9-16
- 26 Tawali AB, Wakiah N, Qanitah K, Asfar M, Sukendar NK. , Metusalach. The effect of sonication time on physicochemical profiles of the nanocalsium from snake-head fish bone (Channa striata). IOP Conf Ser Earth Environ Sci 2019; 355 (01) 012091
- 27 Kusuma HH, Sifah L, Anggita SS. The characterization of hydroxyapatite from blood clam shells and eggs shells: synthesis by hydrothermal method. J Phys: Conf Ser 2021; 1918 (02) 022040
- 28 Wibisono Y, Ummah SR, Hermanto MB, Djoyowasito G, Noviyanto A. Slow-release hydroxyapatite fertilizer from crab shells waste for sustainable crop production. Results Eng 2024; 21: 101781
- 29 Suresh Kumar C, Dhanaraj K, Vimalathithan RM, Ilaiyaraja P, Suresh G. Hydroxyapatite for bone related applications derived from sea shell waste by simple precipitation method. J Asian Ceram Soc 2020; 8 (02) 416-429
- 30 Umesh M, Choudhury DD, Shanmugam S. et al. Eggshells biowaste for hydroxyapatite green synthesis using extract piper betel leaf: evaluation of antibacterial and antibiofilm activity. Environ Res 2021; 200: 111493
- 31 Ibrahim AR, Li X, Zhou Y. et al. Synthesis of spongy-like mesoporous hydroxyapatite from raw waste eggshells for enhanced dissolution of ibuprofen loaded via supercritical CO2 . Int J Mol Sci 2015; 16 (04) 7960-7975
- 32 Mousavi SM, Hashemi SA, Yousefi k. et al. Antibacterial and cytotoxic efficacy of nano-hydroxyapatite synthesized from eggshell and sheep bones bio waste. Research Square 2022;
- 33 dos Santos Horta MK, Westin C, da Rocha DN. et al. Hydroxyapatite from biowaste for biomedical applications: obtainment, characterization and in vitro assays. Mater Res 2023; 26: e20220466
- 34 Alviodinasyari R, Pribadi ES, Soejoedono RD. Soluble protein concentration in snakehead fish albumin Bogor origin (Channa striata and Channa micropeltes). J Vet 2019; 20 (03) 436
- 35 Rosmawati, Bakar Tawali A, Laga A. Karakteristik kimia tulang ikan gabus (Channa striata) dari bobot badan berbeda [Chemical characteristics of snakehead fish bones (Channa striata) of different body weights]. J Inovasi Sains Dan Teknologi (INSTEK) 2019; 2 (01) 63-80
- 36 Devitasari SP, Hudiyati M, Anastasia D. Effect of hydroxyapatite from waste of tilapia bone (Oreochromis niloticus) on the surface hardness of enamel. J Phys: Conf Ser 2019; 1246 (01) 012009
- 37 Abidin AZ. Formulasi pasta gigi ekstrak etanol daun kenikir dan uji aktivitas antibakteri terhadap Streptococcus mutans. [Formulation of toothpaste with ethanol extract of cosmos leaves and antibacterial activity test against Streptococcus mutans]. Farmakologika J Farmasi 2023; 19 (02) 138-152
- 38 Comba A, Scotti N, Maravić T. et al. Vickers hardness and shrinkage stress evaluation of low and high viscosity bulk-fill resin composite. Polymers (Basel) 2020; 12 (07) 1477
- 39 Acharya P, Kupendra M, Fasim A. et al. Synthesis of nano hydroxyapatite from Hypopthalmichthys molitrix (silver carp) bone waste by two different methods: a comparative biophysical and in vitro evaluation on osteoblast MG63 cell lines. Biotechnol Lett 2022; 44 (10) 1175-1188
- 40 Indrani DJ, Lukitowati F, Yulizar Y. Preparation of chitosan/collagen blend membranes for wound dressing: a study on FTIR spectroscopy and mechanical properties. IOP Conf Ser Mater Sci Eng 2017; 202 (01) 12020
- 41 Tarmidzi FM, Tarihoran CRU, Jarkasih FR. Formulasi dan evaluasi karakteristik salep herbal dengan ekstrak binahong (Andradera cordifolia) dan ikan gabus (Channa striata) [Formulation and evaluation of herbal ointment containing extract of binahong (Andradera cordifolia) and catfish (Channa striata)]. Paper presented at: 2nd Seminastika; October 16-17, 2019 ; Balikpapan, Indonesia
- 42 Mahdalin A, Widarsih E, Harismah DK. Pengujian sifat fisika dan sifat kimia formulasi pasta gigi gambir dengan pemanis alami daun stevia [Physical and chemical properties of Uncaria toothpaste formulation with natural sweetener stevia leaves]. URECOL. 2017. Accessed October 13, 2023 at: https://journal.unimma.ac.id/index.php/urecol/article/view/1250
- 43 Venkatesan J, Qian ZJ, Ryu B, Thomas NV, Kim SK. A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed Mater 2011; 6 (03) 035003
- 44 Tri N, Trang TND, Trinh NHD. et al. Hydrothermal and calcination regimes and characteristics of nanohydroxyapatite synthesized from salmon bones. J Biochem Technol 2020; 11 (02) 82-87
- 45 Anggresani L, Perawati S, Dianal F, Sutrisno D. Pengaruh Variasi Perbandingan Mol Ca/P Dalam Pembuatan Hidroksiapatit dari Tulang Ikan Tenggiri (Scomberomorus guttatus). J Farmasi Higea 2020; 12 (01) 55-64
- 46 Esmael SK, Jassim RK, Mahdi R. Preparation and characterization of nano-hydroxyapatite particles and chitosan by sol-gel method (in vitro study). Indian J Forensic Med Toxicol 2020; 14 (02) 593-599
- 47 Rahmayuni Zein U, Anggresani L, Yulianis Y. Pengaruh waktu sintering terhadap hidroksiapatit berpori tulang ikan tenggiri dengan proses sol-gel [Effect of sintering time on porous hydroxyapatite from mackerel fish bone using sol-gel process]. Chempublish J 2020; 5 (01) 46-56
- 48 Afriani F. , Siswoyo, Amelia R, Hudatwi M. , Zaitun, Tiandho Y. Hydroxyapatite from natural sources: methods and its characteristics. IOP Conf Ser Earth Environ Sci 2020; 599 (01) 012055
- 49 Mutmainnah M, Chadijah S, Rustiah WO. Hidroksiapatit dari tulang ikan tuna sirip kuning (Thunnus albacares) dengan metode presipitasi [Hydroxyapatite from yellowfin tuna (Thunnus albacares) bones by precipitation method]. Al-Kimia 2017; 5 (02) 119-126
- 50 Yelten-Yilmaz A, Yilmaz S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram Int 2018; 44 (08) 9703-9710
- 51 Mutia AnggrainiR, Restianingsih T, Deswardani F, Fendriani Y, Ananda R, Purba P. Characterization of hydroxyapatite from Channa striata and Scomberomorus commerson fish bone by heat treatment. Journal Online of Physics 2023; 9 (01) 49-54
- 52 Ahmed YMZ, El-Sheikh SM, Zaki ZI. Changes in hydroxyapatite powder properties via heat treatment. Bull Mater Sci 2015; 38 (07) 1807-1819
- 53 Gusnawati, Sabara Z. , Munira, Bakhri S. Karakterisasi mutu pasta gigi dengan penambahan garam dan virgin coconut oil (VCO) ditinjau dari SNI 12–3524–1995 [Characterization of the quality of toothpaste with the addition of salt and virgin coconut oil (VCO) reviewed from SNI 12–3524–1995]. J Industri Hasil Perkebunan 2022; 17 (01) 41-49
- 54 Warnida H, Juliannor A, Sukawaty Y. Formulasi Pasta gigi gel ekstrak etanol bawang dayak (Eleutherine bulbosa (Mill.) Urb.) [Toothpaste gel formulation of Dayak onion ethanol extract (Eleutherine bulbosa (Mill.) Urb.)]. J Sains Farmasi Klinis 2016; 3 (01) 42
- 55 Tosco V, Vitiello F, Monterubbianesi R. et al. Assessment of the remineralizing potential of biomimetic materials on early artificial caries lesions after 28 days: an in vitro study. Bioengineering (Basel) 2023; 10 (04) 462
- 56 Anil AI, Ibraheem WA, Meshni A, Preethanath R, Anil S. Demineralization and remineralization dynamics and dental caries. In: Rusu L-C, Cosmina Ardelean L. eds. Dental Caries: The Selection of Restoration Methods and Restorative Materials. London: InTechOpen Limited; 2022
- 57 Carey CM. Remineralization of early enamel lesions with apatite-forming salt. Dent J 2023; 11 (08) 182
- 58 Febriani M, Amelia H, Alawiyah T, Rachmawati E. The potential of hydroxyapatite toothpaste towards the hypersensitive tooth. Int J Med Sci Clin Invent 2021; 8 (12) 5849-5857
- 59 Pushpalatha C, Gayathri VS, Sowmya SV. et al. Nanohydroxyapatite in dentistry: a comprehensive review. Saudi Dent J 2023; 35 (06) 741-752
- 60 Anil A, Ibraheem WI, Meshni AA, Preethanath RS, Anil S. Nano-hydroxyapatite (nHAp) in the remineralization of early dental caries: a scoping review. Int J Environ Res Public Health 2022; 19 (09) 5629
- 61 Huang S, Gao S, Cheng L, Yu H. Combined effects of nano-hydroxyapatite and Galla chinensis on remineralisation of initial enamel lesion in vitro. J Dent 2010; 38 (10) 811-819
- 62 Juntavee A, Juntavee N, Hirunmoon P. Remineralization potential of nanohydroxyapatite toothpaste compared with tricalcium phosphate and fluoride toothpaste on artificial carious lesions. Int J Dent 2021; 2021: 5588832
- 63 Meyer F, Enax J, Amaechi BT. et al. Hydroxyapatite as remineralization agent for children's dental care. Front Dent Med 2022; 3: 1-10
- 64 Amaechi BT, Phillips TS, Evans V. et al. The potential of hydroxyapatite toothpaste to prevent root caries: a pH-cycling study. Clin Cosmet Investig Dent 2021; 13: 315-324
- 65 Amaechi BT, van Loveren C. Fluorides and non-fluoride remineralization systems. Monogr Oral Sci 2013; 23: 15-26