RSS-Feed abonnieren
DOI: 10.1055/s-2000-10995
© Johann Ambrosius Barth
Ist die Beurteilung der Primärstabilität zervikaler Osteosynthesen durch ein Finite-Elemente Modell möglich?
Prediction of initial stability of cervical spinal osteosynthesis by a finite element model?Publikationsverlauf
10. 12. 1999
07. 08. 2000
Publikationsdatum:
31. Dezember 2000 (online)
Zusammenfassung:
In dieser Arbeit wird ein dreisegmentales (C4-C7) Finite-Elemente Modell der menschlichen Halswirbelsäule vorgestellt. Ausgehend von dem intakten Modell wurde in einem zweiten Modell auch eine interkorporale Knochenspanfusion und monokortikale Plattenosteosynthese C5/6 simuliert. Mit reinen Momenten von 2,5 Nm wurden beide Modelle in Flexion-Extension, axialer Rotation und Seitneigung belastet. Für beide Modelle wurde der Bewegungsumfang im Segment C5/6 berechnet und mit den Ergebnissen einer biomechanischen Analyse verglichen, die zuvor mit den gleichen Belastungsparametern und Implantaten an sechs menschlichen Halswirbelsäulenabschnitten durchgeführt worden war. Beide Methoden zeigten vergleichbare Ergebnisse. Unter Berücksichtigung der Grenzen der Finite-Elemente Methode könnte dieses Modell somit angewendet werden, um erste Aussagen über die Primärstabilität neuer zervikaler Implantate zu treffen.
Summary:
The study is dealing with a threesegmental (C4-C7) finite element model of the intact human cervical spine. Additionally, anterior cervical fusion and plating (ACFP) with Caspar-plate and bicortical screws in C5/6 was simulated. The models were loaded using pure moments of 2.5 Nm in flexion-extension, axial rotation and lateral bending. The range of motion in C5/6 was calculated and compared to the results of a biomechanical in vitro study, that used six cadaveric human spinal segments C4-C7 for analysing range of motion C5/6 in the intact state and following ACFP. The predictions of the finite element models were always within one standard deviation of the results of the in vitro study. Thus, the current model could be used for first analysis on new C-spine implants. However, the results should be interpreted as a trend and the limitations of these models should be kept in mind.
Schlüsselwörter:
Biomechanik - Halswirbelsäule - Implantate - Simulation
Key words:
Biomechanics - cervical spine - implants - simulation
Literatur
- 1 Banerjee R K, Gonzalez C F, Cho Y I, Picard L. Hemodynamic changes in intracranial terminal aneurysm after endovascular treatment. Acad Radiol. 1996; 3 202-211
- 2 Brodke D S, Dick J C, Kunz D N, McRabe R, Zdeblick T A. Posterior lumbar interbody usion. A biomechanical comparison, including a new threaded cage. Spine. 1997; 22 26-31
- 3 Goel V K, Monroe B T, Gilbertson L G, Brinkmann P. Interlaminar shear stresses and lamina separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine. 1995; 20 689-698
- 4 Goel V K, Gilbertson L G. Applications of the finite element method to the thoracolumbar spinal research - past, present and future. Spine. 1995; 20 1719-1727
- 5 Goel V K, Clausen J D. Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach. Spine. 1998; 23 684-691
- 6 Gonzalez C F, Cho Y I, Ortega H V, Moret J. Intracranial aneurysms: Flow analysis of their origin and progression. Am J Neuroradiol. 1992; 13 181-188
- 7 Huebener K H, Bryom T G. The finite element method for engineers. Wiley-Interscience Publication, New York 1995
- 8 Konermann W, Stubbe F, Link T, Meier N. Axial compressive strength of human thoracolumbar vertebrae - an experimental study. Z Orthop. 1999; 137 223-231
- 9 Low M, Perktold K, Raunig R. Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics. Biorheology. 1993; 30 287-298
- 10 Pitzen T, Wilke H J, Caspar W, Claes L, Steudel W I. Evaluation of a new monocortical screw for anterior cervical fusion and plating by a combined biomechanical and clinical study. Eur Spine J. 1999; 8 382-386
- 11 Pitzen T, Matthis D, Müller-Storz H, Caspar W, Steudel W I, Harms J. Die Primärstabilität von zwei PLIF-Techniken. Eine biomechanische und Finite Elemente Analyse. Zentralbl Neurochir. 1999; 60 114-120
- 12 Pitzen T, Caspar W, Matthis D, Müller-Storz H, König J, Georg T, Wurm E M, Steudel W I. Initial stability of two PLIF-techniques. A biomechanical in-vitro-comparison. Z Orthop. 1999; 137 214-218
- 13 Shirazi-Adl A, Ahmed A M, Shrivastava S C. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech. 1986; 19 331-350
- 14 Silva M J, Keaveny T M, Hayes W C. Load sharing between the shell and centrum in the lumbar vertebral body. Spine. 1997; 22 140-150
- 15 Takizawa H, Sugiura K, Baba M, Miller J D. Analysis of intracerebral hematoma shapes by numeriocal computer simulation using the finite element method. Neurol Med Chir Tokyo. 1994; 34 65-69
- 16 Voo L M, Kumaresan S, Yogananan N, Pintar F A, Cusik J F. Finite element analysis of cervical facetectomy. Spine. 1997; 22 964-969
- 17 Wilke H J, Wenger K, Claes L. Testing criteria for spinal implants - Recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J. 1998; 7 148-154
- 18 Wilke H J, Kettler A, Claes L E. Are sheep spines a valid biomechanical model for human spines?. Spine. 1997; 22 2365-2374
- 19 Zöllner J, Rosendahl T, Herbsthofer B, Humke T, Eysel P. The influence of nucleotomy on the biomechanical behaviour of the intervertebral disc. Z Orthop. 1999; 137 206-210
Dr. med. Tobias Pitzen
Neurochirurgische Klinik
Universitätsklinik des Saarlandes
D-66421 Homburg/Saar
Telefon: + 49/6841/164400
Fax: + 49/6841/164480
eMail: pitzen@t-online.de