Subscribe to RSS
DOI: 10.1055/s-2000-11075
Neurobiologische Grundlagen der Aufmerksamkeit: „Über die Freiheit der Wahl”
Neurobiological Fundamentals of Attentivity: (On the Freedom of Choice)Publication History
Publication Date:
31 December 2000 (online)
Zusammenfassung
Einleitung: Die Aufmerksamkeit gilt als selektiver Aspekt der Wahrnehmung. Diese Selektion repräsentiert eine Auswahl, die meist - aber nicht immer - begrenzt wird von der Art der eintreffenden Information, der initialen Motivation und der angestrebten Ziele. Unter den verschiedenen möglichen Differenzierungen dieses Konzeptes hat die Unterscheidung von automatischen und kontrollierten Prozessen, die eng mit serieller und paralleler Verarbeitungen verbunden sind, eine besondere Bedeutung. Neurophysiologie: Die selektive Aufmerksamkeit für einen bestimmten Reiz beinhaltet, dass ein Teil der Information weitergeleitet wird zur Verarbeitung. Diese Weiterleitung erfordert ein synchronisiertes Feuern der relevanten neuronalen Bahnen, das durch ein EEG ermittelt werden kann. Bildet man die durch einen Stimulus ausgelösten EEG-Durchschnittswerte (Ereigniskorrelierte Potentiale), dann sind Erregungs- und Hemmungskomponenten zu erkennen, die sich den verschiedenen Prozessstadien vom Erkennen eines Signales über die Hemmung interferierender Prozesse bis zur Kategorisierung des Reizes zuordnen lassen. Bei der Abweichung von Stimuli werden negative Potentiale (Erregung) abgeleitet (automatische Prozesse) und die zugehörigen Verarbeitungsspuren (kontrollierte Prozesse) dargestellt. Gamma-, Beta- und Thetawellen im EEG reflektieren differenziert eine „binding of stimulus features” in nähere und entferntere Hirnbereiche. Neurotransmitterfunktion: Die chemische Kodierung in dem neuronalen System erfolgt mit den biogenen aminen Transmittern. Dies erlaubt eine Betrachtung der einzelnen Verarbeitungsschritte, die zur Einordnung der Reize erforderlich sind. Die Kontrolle der Reizstärke erfolgt mit Serotonin, Noradrenalin steuert die Einstellung und Dopamin ist zuständig für die Umschaltung der Aufmerksamkeit. Die Acetylcholin-Aktivität scheint bei salienten Reizeigenschaften eine automatische Verarbeitung zu fördern. Anatomie der Aufmerksamkeit: Funktionelle Kernspin-Resonanz-Bildgebungsverfahren von Hirnarealen, die bei Aufmerksamkeitsprozessen aktiviert werden, zeigen, dass es „Epizentren” von Aufmerksamkeits-Funktionen gibt, die variablen diffus verteilten Aktivitätsmustern übergeordnet sind. Die Frontalregionen üben eine exekutive Kontrolle aus, werden jedoch in Konfliktfällen der Informationsverarbeitung und bei Fehlermeldungen durch cinguläre Aktivitäten unterstützt. Teile der Parietallappen links und rechts registrieren zeitliche und räumliche Aspekte von Ereignissen, deren Relevanz durch Mustervergleiche im Temporallappen bestimmt werden. Die Auswahl der für eine adäquate Reaktion erforderlichen Informationen - selektive Aufmerksamkeit - erfordert daher ein Netzwerk koordinierter Reaktionen unterschiedlicher Hirnareale, die auf elementare Steuerungsmechanismen des Hirnstammes zur Klassifizierung von Informationen aufbaut.
Introduction: Attention is viewed as the selective aspect of perception. This selective process is represented as a choice, often but not always constrained by the initial possibilities, motivation and adaptive aims. Fundamental among numerous useful divisions of the concept, is the differentiation of automatic and controlled attention that largely incur serial and parallel processing of information. Neurophysiology: Selective attention to a stimulus implies that some information is passed on for further processing - this passage depends on the synchronous firing of the relevant neuronal pathways. The EEG sums these and a look at the average after an event shows excitatory and inhibitory components (event-related potentials, ERPs) that relate to the processing stages from registration, inhibiting interference from other processes and stimulus categorisation. Negativities (excitation) can be recorded for deviant detection (automatic) and attended traces (controlled processing). Gamma, beta and theta frequency bands in the EEG reflect differentially the binding of related features in nearer and further regions of function. Neurotransmitter Roles: The chemical coding of these neural systems with the biogenic amine transmitters allows for a division of labour in the mechanisms necessary for „sorting” information. These are described in terms of volume control (serotonin), tuning (noradrenaline) and switching (dopamine). The effect of acetylcholine seems to reflect a mechanism by which a stimulus by means of its salience captures automatic processing. An Anatomy of Attention: Functional magnetic imaging of brain regions activated during attentional processing show that there are „epicentres” of attentional function superimposed on variable diffusely distributed activity patterns. Frontal regions exert an executive role, facilitated by cingulate activitiy in conflict and error-control. Parietal loci on the left and right register temporal and spatial identification of events whose relevance can be assessed by comparator mechanisms in the temporal lobe. Choices of what is relevant - selective attention - for the adaptive organisation of response thus reflect a concerted effort within a network of heteromodal cortices based on the basic mechanisms for sorting information arising out of the brainstem.
Schlüsselwörter
Aufmerksamkeit - Ereignis-korrelierte Potentiale - Frontallappen - Parietallappen - Temporallapen
Key words
Attention - Event-related potentials - Monoamines - Frontal cortex - Parietal cortex - Temporal cortex
Literatur
- 1 Treisman A M:. Strategies and models of selective attention. Psychol. Rev.. 1969;; 76 282-299
- 2 Mesulam M-M:. Spatual attention and neglect: parietal, frontal and cingualte contributions to the mental representation and attentional targeting of salient extrapersonal events. Phil. Trans. R. Soc. Lond. B. 1999;; 354. 1325-1346
- 3 Hackley S A,, Woldorff M,, Hillyard S A:. Combined uses of micro-reflexes and event-related potentials as measures of auditory selective attention. Psychophysiol.. 1987;; 24 632-647
- 4 Steinmetz P N,, Roy A,, Fitzgerald P J,, Johnson K O,, Niebur E:. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature. 2000;; 404 187-190
- 5 Alho K,, Tottola K,, Reinikainen K,, Sams M,, Näätänen R:. Brain mechanism of selective listening reflected by event-related potentials. Electroencephalogr. Clin. Neurophysiol.. 1987;; 68 458-470
- 6 Oades R D:. Frontal, temporal and lateralized brain function in children with attention-deficit hyperactivity disorder: a psychophysiological and neuropsychological viewpoint on development. Behav. Brain. Res.. 1998;; 94 83-95
- 7 Bender S,, Schall U,, Wolstein J,, Grzella I,, Zerbin D,, Oades R D:. A topographic event-related potential follow-up study on “prepulse inhibition” in first and second episode patients with schizophrenia. Psychiat. Res. Neuroimaging. 1999;; 90 41-53
- 8 Oades R D,, Zerbin D,, Dittmann-Balcar A,, Eggers C:. The topography of event-related potentials and four subtraction waves in a three-tone auditory discrimination: young healthy adults and patients with obsessive-compulsive disorder, paranoid and non-paranodi psychosis. Int. J. Psychophysiol.. 1996;; 22 185-214
- 9 Oades R D,, Dittmann-Balcar A,, Zerbin D:. Development and topography of auditory event-related potentials (ERPs): mismatch and processing negativity in individuals 8 - 22 years of age. Psychophysiol.. 1997;; 34 677-693
- 10 Stefansson S,, Jonsdottir T J:. Auditory event-related potentials, auditory digit span and clinical symptoms in chronic schizophrenic men on neuroleptic medication. Biol. Psychiat.. 1996;; 40 19-27
- 11 Basar E,, Basar-Eroglu C,, Karakas S,, Schürmann M.. Brain oscillations in perception and memory. Int. J. Psychophysiol.. 2000;; 35 95-124
- 12 Treisman A M:. A feature-integrative theory of attention. Q. J. Exp. Psychol.. 1988;; 40 201-237
- 13 Kopell N,, Ermentrout G B,, Whittington M A,, Traub R D:. Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. (USA). 2000;; 97 1867-1872
- 14 Curran H V,, Pooviboonsuk P,, Dalton J A,, Lader M H:. Differentiating the effects of centrally acting drugs on arousal and memory: an event-related potential study of scopolamine, lorazepam and diphenhydramine. Psychopharmacol.. 1998;; 135 27-36
- 15 Furey M L,, Cutrell E B,, Marrocco R T:. Scopolamine slows the orienting of attention in primates to cued visual targets. Psychopharmacol.. 1999;; 142 1-8
- 16 Brandeis D,, Naylor H,, Halliday R,, Callaway E,, Yano L:. Scopolamine effects on visual information processing, attention and event-related potential map latencies. Psychophysiol.. 1992;; 29 315-336
- 17 Puumala T,, Sirviö J:. Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neurosci.. 1998;; 83 489-499
- 18 Juckel G,, Hegerl U,, Molnar M,, Csepe V,, Karmos H:. Auditory evoked potentials reflect serotonergic activity - a study in behaving cats adminsitered drugs acting on 5-HT1a autoreceptors in the dorsal raphe nucleus. Neuropsychopharmacol.. 1999;; 21 710-716
- 19 Oades R D:. Connections between studies of the neurobiology of attention, psychotic processes and event-related potentials. Electroencephalogr. Clin. Neurophysiol.. 1995;; Supplement 44 428-438
- 20 Aston-Jones G,, Rajkowski J,, Cohen J:. Role of locus coeruleus in attention and behavioral flexibility. Biol. Psychiat.. 1999;; 46 1309-1320
- 21 Li B-M,, Kubota K:. α-2 adrenergic modualtion of prefrontal cortical neuronal activity related to a visual discrimination task with GO and NO-GO performance in monkeys. Neurosci. Res.. 1998;; 31 83-95
- 22 Oades R D:. The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neurosci. Biobehav. Rev.. 1985;; 9 261-283
- 23 Cepeda C,, Levine M S:. Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev. Neurosci.. 1998;; 20 1-18
- 24 Moore H,, West A R,, Grace A A:. The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia. Biol. Psychiat.. 1998;; 46 40-55
- 25 Van der Schuren L JMJ,, Wardeh G,, de Vries T J,, Mulder A H,, Schoffelmeer A NM:. Opposing role of dopamine D1 and D2 receptors in modulation of rat nucleus accumbens noradrenaline release. J. Neurosci.. 1999;; 19 4123-4131
- 26 Shinba T,, Andow Y,, Shinozaki T,, Ozawa N,, Yamamoto K-I:. Phasic increase of monoamine-related electrochemical signal in the rat caudate nucleus following conditioned auditory stimulating during the reaction time task. Brain Res.. 1998;; 781 284-290
- 27 Wilkinson L S,, Humby T,, Killcross A S,, Torres E M,, Everitt B J,, Robbins T W:. Dissociations in dopamine release in medial prefrontal cortex and ventral striatum during the acquisition and extinction of classical aversive conditioning in the rat. Eur. J. Neurosci.. 1998;; 10 1019-1026
- 28 Oades R D:. Stimulus dimension shifts in patients with schizophrenia, with and without paranoid hallucinatory symptoms, or obsessive compulsive disorder: strategies, blocking and monoamine status. Behav. Brain. Res.. 1997;; 88 115-131
- 29 Coull J T:. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog. Neurobiol.. 1998;; 55 343-361
- 30 Dove A,, Pollmann S,, Schubert T,, Wiggins C J,, von Cramon S Y:. Prefrontal cortex activation in task switching: an event-related fMRI study. Cognit. Brain. Res.. 2000;; 9 103-10 9
- 31 Corbetta M,, Akbudak E,, Conturo T E,, Synder A Z,, Ollinger J M,, Drury H A,, Linenweber M R,, Petersen S E,, Raichle M E,, Van Essen D C,, Shulman G L:. A common network of functional areas for attention and eye movements. Neuron.. 1998;; 21 761-773
- 32 Gitelman D R,, Nobre A C,, Parrish T B,, LaBar K S,, Kim Y-H,, Meyer J R,, Mesulam M-M:. A large scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain.. 1999;; 12 1093-1106
- 33 Coull J T,, Nobre A C:. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci.. 1998;; 18 7426-7435
- 34 Barch D M,, Braver T S,, Nystrom L E,, Forman S D,, Noll D C,, Cohen J D:. Dissociating working memory from task difficulty in the human prefrontal cortex. Neuropsychologia. 1997;; 35 1373-1380
- 35 Posner M I,, Rothbart M K:. Attention, self-regulation and consciousness. Phil. Trans. R. Soc. Lond. B.. 1998;; 353 1915-1927
- 36 Posner M I,, Dehaene S:. Attentional networks. Trends in Neurosciences. 1994;; 17 75-79
- 37 Lynch J C,, Mountcastle V B:. Parietal lobe mechanisms for directed visual attention. J. Neurophysiol.. 1977,; 40 362-389
1 MMN bei hyperaktiven Kindern zeigt eine mangelhafte Entwicklung an der rechten Seite [6].
Robert D. Oades
Virchowstr. 174
45147 Essen
Email: oades@uni-essen.de