Seminars in Neurosurgery 2000; 11(1): 17-26
DOI: 10.1055/s-2000-11554
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

TREATMENT OF CEREBRAL VASOSPASM WITH INTRATHECAL NITRIC OXIDE DONORS

Jeffrey E. Thomas
  • Division of Cerebrovascular Surgery and Interventional Neuroradiology, Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
31. Dezember 2000 (online)

 

ABSTRACT

Cerebral vasospasm remains a formidable obstacle to the recovery of patients surviving aneurysmal subarachnoid hemorrhage. Its mechanisms appear to be complex and knowledge of them is incomplete, resulting in relatively indirect and often ineffective treatments. Particularly acknowledged is the occurrence of vasospasm in smaller-caliber resistance vessels, capable of causing significant neurological dysfunction yet not easily detectable by transcranial Doppler examination or cerebral angiography. Therapeutic options for this type of vasospasm are very limited. Molecular-level investigations in recent years have shed some light upon possible mechanisms of vasospasm that may be amenable to therapeutic intervention by manipulation. The introduction of the nitric oxide molecule to the adventitial microenvironment through intrathecal administration is one such manipulation based on hypothesis-driven research; it has recently been introduced to the clinical setting by the author and is the subject of this report.

REFERENCES

  • 1 Heros R C, Zervas N T, Varsos V. Cerebral vasospasm after subarachnoid hemorrhage: An update.  Ann Neurol . 1983;  14 599-608
  • 2 Zabramski J M, Hamilton M G. Cerebral vasospasm. In: Carter LP, Spetzler RF, eds. Neurovascular Surgery New York, NY: McGraw-Hill 1995: 583-602
  • 3 Kassell N F, Torner J C, Haley E C, Jane J E, Adams H P, Kongable G L. The International Cooperative Study on the Timing of Aneurysm Surgery: Part 1. Overall management results.  J Neurosurg . 1990;  73 18-36
  • 4 Thomas J E. Molecular biological considerations in cerebral vasospasm following aneurysmal subarachnoid hemorrhage.  Neurosurg Focus . 1997;  3(3)
  • 5 Nathan C. Nitric oxide: Roles, tolls and controls.  Cell . 1994;  78 915-918
  • 6 Gibson Q H, Roughton F JW. The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin.  J Physiol . 1957;  136 507-526
  • 7 Ohlstein E H, Storer B L. Oxyhemoglobin stimulation of endothelin production in cultured endothelial cells.  J Neurosurg . 1992;  77 274-278
  • 8 Roost K T, Pimstone N R, Diamond I. The formation of cerebrospinal fluid xanthochromia after subarachnoid hemorrhage: Enzymatic conversion of hemoglobin to bilirubin by the arachnoid and choroid plexus.  Neurology . 1972;  22 973-977
  • 9 Weir B, Grace M, Hansen J, Rothberg C. Time course of vasospasm in man.  J Neurosurg . 1978;  48 173-178
  • 10 Foley P L, Caner H H, Kassell N F, Lee K S. Reversal of subarachnoid hemorrhage-induced vasoconstriction with an endothelin receptor antagonist.  Neurosurgery . 1994;  34 108-113
  • 11 Handa Y, Weir B K, Nosko M, Mosewich R, Tsuji T, Grace M. The effect of timing of clot removal on chronic vasospasm in a primate model.  J Neurosurg . 1987;  67 558-564
  • 12 Sonobe M, Suzuki J. Vasospasmogenic substance produced following subarachnoid hemorrhage, and its fate.  Acta Neurochir . 1978;  44 97-106
  • 13 Arnold W P, Mittal C K, Katsuki S, Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3,5-monophosphate levels in various tissue preparations.  Proc Natl Acad Sci (USA) . 1977;  74 3203-3207
  • 14 Murad F. Signal transduction using nitric oxide and cyclic guanosine monophosphate.  JAMA . 1996;  276 1189-1192
  • 15 Furchgott R F, Zawadzki J V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.  Nature . 1980;  288 373-376
  • 16 Hirsh L F. Intraarterial nitroprusside treatment of acute experimental vasospasm.  Stroke . 1980;  11 601-605
  • 17 Husted J W, Ring E J, Hirsh L F. Intraarterial nitroprusside treatment for ergotism.  Am J Roent . 1978;  131 1090-1092
  • 18 Pluta R M, Oldfield E H, Boock R J. Reversal and prevention of cerebral vasospasm by intracarotid infusions of nitric oxide donors in a primate model of subarachnoid hemorrhage.  J Neurosurg . 1997;  87 746-751
  • 19 Morris S M, Billiar T R. New insights into the regulation of inducible nitric oxide synthesis.  Am J Physiol . 1994;  266 E829-E839
  • 20 Egemen N, Turker R K, Sanlidilek U. The effect of intrathecal sodium nitroprusside on severe chronic vasospasm.  Neurol Res . 1993;  15 310-315
  • 21 Thomas J E, Nemirovsky A, Zelman V, Giannotta S L. Rapid reversal of endothelin-1-induced cerebral vasoconstriction by intrathecal administration of nitric oxide donors.  Neurosurgery . 1995;  40 1245-1249
  • 22 Thomas J E, Rosenwasser R H. Reversal of severe cerebral vasospasm in three patients after aneurysmal subarachnoid hemorrhage: Initial observations regarding the use of intraventricular sodium nitroprusside in humans.  Neurosurgery . 1999;  44 48-58
  • 23 Thomas J E, Rosenwasser R H, Armonda R A, Harrop J, Mitchell W, Galaria I. Safety of intrathecal sodium nitroprusside for the treatment and prevention of refractory cerebral vasospasm and ischemia in humans.  Stroke . 1999;  30 1409-1416
  • 24 Gralla R J. Antiemetic therapy.  Semin Oncol . 1998;  25(5) 577-583