Semin Neurol 2000; 20(4): 479-486
DOI: 10.1055/s-2000-13181
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Disorders of Visual Recognition

Ennio De Renzi
  • Clinica Neurologica, Modena, Italy
Further Information

Publication History

Publication Date:
03 March 2004 (online)

ABSTRACT

Agnosias are disorders of recognition, specific to one sensory channel, that affect either the perceptual analysis of the stimulus or the recognition of its meaning. In the visual modality, objects, faces, and colors can be separately disrupted. Apperceptive object agnosia refers to failure to achieve a structured description of the shape of the object. Associative agnosia refers to inability to attribute a meaning to a correctly perceived stimulus. It must be differentiated from optic aphasia, in which the object is recognized but cannot be named in the visual modality. Associative agnosia and optic aphasia are associated with left occipitotemporal damage, and they differ more quantitatively than qualitatively. The inability to recognize familiar faces (prosopagnosia) can appear in isolation and be, in some cases, associated with a lesion confined to the occipitotemporal region of the right hemisphere. These findings are supportive of the idea that faces have a separate representation in the brain.

Disorders of color cognition can affect color categorization, color-name association, and color-object association. They are linked to left hemisphere damage. The ability to recognize objects presented in the visual modality is a hierarchical process in which several cortical areas, corresponding to about 30% of the cortical mantle, participate. Their selective lesion results in a gamut of disorders whose identification provides the experienced neurologist with clues to the locus of damage and contributes to the understanding of the cognitive architecture underpinning recognition. They can result either in the inability to detect any change occurring in the visual field or in the impairment of further stages of the recognition process, from the analysis of the perceptual properties of the stimulus (form, color, motion, depth, etc.) to the achievement of its structural description and, eventually, the attribution of a meaning. In this paper, I focus on the diagnostic and clinical features characterizing the disruption of the last stage of visual information processing; that is, the failure to identify what a stimulus represents despite evidence that its three-dimensional structure has been properly reconstructed. In the literature, this impairment is traditionally referred to as associative agnosia,[1] a psychological construct that attributes the deficit to the inability to associate a well-discriminated percept with its semantic attributes, which are stored in separate cortical areas. In the visual modality, three discrete forms of associative agnosia have been described, affecting objects, faces, and colors. These are treated separately.

REFERENCES

  • 1 Lissauer H. Ein Fall von Seelenblindheit nebst einem Beitrag zur Theorie derselben.  Arch Psychiat . 1890;  21 222-270 (English translation in Cogn Neuropsychol 1988;5:153-192).
  • 2 Ettlinger G. Sensory deficits in visual agnosia.  J Neurol Neurosurg Psychiatry . 1957;  19 297-307
  • 3 Kartzounis L D, Warrington E K. Failure of object recognition due to a breakdown of figure-ground discrimination in a patient with normal acuity.  Neuropsychologia . 1991;  29 269-280
  • 4 Davidoff J, Warrington E K. A dissociation of shape discrimination and figure-ground perception in a patient with normal acuity.  Neuropsychologia . 1993;  31 83-93
  • 5 De Renzi E, Lucchelli F. The fuzzy boundaries of apperceptive agnosia.  Cortex . 1993;  29 187-215
  • 6 Luzzatti C, Rumiati R, Ghirardi G. A functional model of visuo-verbal disconnection and the neuroanatomical constraints of optic aphasia.  Neurocase . 1998;  4 71-87
  • 7 Freund C S. Ueber optische Aphasie und Seelenblindheit.  Arch Psychiatr Nervenkr. 1889;  20 276-297 371-416
  • 8 Dejerine J. Contribution a l' ètude anatomo-pathologique et clinique des différent variétés de cécité verbale.  C R Séances Soc Biol . 1892;  4 61-90
  • 9 Lhermitte F, Beauvois M F. A visual-speech disconnection syndrome: report of a case with optic aphasia, agnosic alexia and colour agnosia.  Brain . 1973;  96 695-714
  • 10 Iorio L, Falanga A, Fragassi N A, Grossi D. Visual associative agnosia and optic aphasia: a single case study and a review of the syndromes.  Cortex . 1992;  28 23-37
  • 11 Davidoff J, De Bleser R. Optic aphasia: a review of past studies and reappraisal.  Aphasiol . 1993;  7 135-154
  • 12 De Renzi E, Saetti C. Associative agnosia and optic aphasia: qualitative or quantitative difference?.  Cortex . 1997;  33 115-130
  • 13 Hillis A E, Caramazza A. Cognitive and neural mechanisms underlying visual and semantic processing: implications from optic aphasia.  Cogn Neuropsychol . 1995;  7 457-478
  • 14 Chanoine V, Teixeira Ferreira C, Demonet J F, Nespoulos J L, Poncet M. Optic aphasia with pure alexia: a mild form of visual associative agnosia.  Cortex . 1998;  34 437-448
  • 15 Coslett H B, Safran E M. Preserved object recognition and reading comprehension in optic aphasia.  Brain . 1989;  112 1091-1110
  • 16 Coslett H B, Safran E M. Optic aphasia and the right hemisphere: a replication and extension.  Brain Lang . 1992;  43 148-161
  • 17 Cronin-Golomb A. Comprehension of abstract concepts in right and left hemispheres of complete commissurotomy subjects.  Neuropsychologia . 1986;  24 881-887
  • 18 Trevarthen C. Integrative functions of the cerebral commissures. In: Boller F, Grafman G, eds. Handbook of Neuropsychology Vol. 4. Amsterdam: Elsevier 1990: 49-83
  • 19 De Renzi E, Scotti G, Spinnler H. Perceptive and associative disorders of visual recognition: relationship to the side of the cerebral lesion.  Neurology . 1969;  19 634-642
  • 20 Warrington E K, Taylor A M. The contribution of the right parietal lobe to object recognition.  Cortex . 1973;  9 152-164
  • 21 Warrington E K, Taylor A M. Two categorical stages of object recognition.  Perception . 1978;  7 695-705
  • 22 Rubens A B. Agnosia. In: Heilman KM, Valenstein E, eds. Clinical Neuropsychology New York: Oxford University Press 1979: 233-267
  • 23 De Renzi E, Zambolin A, Crisi G. The pattern of neuropsychological impairment associated with left posterior cerebral artery infarction.  Brain . 1987;  110 1099-1016
  • 24 Campbell R, Manning L. Optic aphasia: a case with spared action naming and associated disorders.  Brain Lang . 1996;  53 183-221
  • 25 Teixeira Ferreira C, Giusiano B, Ceccaldi M, Poncet, M. Optic aphasia: evidence of the contribution of different neural systems to object and action naming.  Cortex . 1997;  33 499-511
  • 26 Goldenberg G, Karlbauer F. The more you know the less you can tell: inhibitory effects of visuo-semantic activation on modality specific visual misnaming.  Cortex . 1998;  34 471-491
  • 27 Bushnell I WR, Sai F, Mullin J T. Neonatal recognition of the mother's face.  Br J Dev Psychol . 1989;  7 3-15
  • 28 Pascalis O, de Schonen S, Morton J, Deruelle C, Fabre-Grenet M. Mother's face recognition by neonates: a replication and an extension.  Infant Behav Dev . 1995;  18 79-85
  • 29 de Schonen S, Mathivet E. Hemispheric asymmetry in a face discrimination task in infants.  Child Dev . 1990;  61 1192-1205
  • 30 De Renzi E, Faglioni P, Grossi D, Nichelli P. Apperceptive and associative forms of proso-pagnosia.  Cortex . 1991;  27 213-221
  • 31 Benton A L, Van Allen W M. Impairment in facial recognition in patients with cerebral disease.  Cortex . 1968;  4 344-358
  • 32 Warrington E K, James M. An experimental investigation of facial recognition in patients with unilateral cerebral lesions.  Cortex . 1967;  3 317-326
  • 33 De Renzi F, Faglioni P, Spinnler H. The performance of patients with unilateral brain damage on face recognition tasks.  Cortex . 1968;  4 7-34
  • 34 Tzavaras A, Hécaen H, Lebras H. Le problème de la spécificité du deficit de la reconnaissance du visage humaine lors de lésions hémisphériques unilaterales.  Neuropsychologia . 1970;  8 403-416
  • 35 Bruce V, Young A W. Understanding face recognition.  Br J Psychol . 1986;  77 305-327
  • 36 De Renzi E, di Pellegrino G. Prosopagnosia and alexia without object agnosia.  Cortex . 1998;  34 407-415
  • 37 Damasio A R, Damasio H, Van Hoesen W G. Prosopagnosia: anatomical basis and behavioral mechanism.  Neurology . 1982;  32 331-341
  • 38 Humphreys G W, Riddoch M J. The fractionation of visual agnosia. In: GW Humphreys, Riddoch MJ, eds. Visual Object Processing: A Cognitive Neuropsychological Approach Hillsdale, NJ: Lawrence Erlbaum Associates 1987: 281-306
  • 39 Faust C. Die cerebralen Herdstoerungen bei Hinterhauptverletzungen und ihre Beurteilung.  Stuttgart: Thieme; 1955
  • 40 Lhermitte F, Chain F, Escourolle R, Ducarne B, Pillon B. Etude anatomo-clinique d'un cas de prosopagnosie.  Rev Neurol . 1972;  126 329-346
  • 41 Sergent J, Signoret J L. Varieties of functional deficits in prosopagnosia.  Cereb Cortex . 1992;  2 375-388
  • 42 McNeil J, Warrington E K. Prosopagnosia: a reclassification.  Q J Exp Psychol . 1991;  43A 267-287
  • 43 De Renzi E. Current issues on prosopagnosia. In: HD Ellis, MA Jeeves, F Newcombe, A Young, eds. Aspects of Face Processing Dordrecht: Martinus Nijhoff 1986: 243-252
  • 44 Perret D I, Mistlin A I, Chitty A J. Visual neurons responsive to faces.  Trends Neurosci . 1987;  19 358-364
  • 45 Desimone R. Face-selective cells in the temporal cortex of monkeys.  J Cogn Neurosci . 1991;  3 1-8
  • 46 Landis T, Regard M, Bliestle A, Kleihues P. Prosopagnosia and agnosia for noncanonical views: an autopsied case.  Brain . 1988;  111 1287-1297
  • 47 De Renzi E, Perani D, Carlesimo G A, Silveri M C, Fazio F. Prosopagnosia can be associated with damage to the right hemisphere: an MRI and PET study and a review of the literature.  Neuropsychologia . 1994;  32 893-902
  • 48 Sergent J, Otha S, MacDonald B. Functional neuroanatomy of face and object processing.  Brain . 1992;  115 15-36
  • 49 McCarthy G, Puce A, Gore J C, Allison T. Face specific processing in the human fusiform gyrus.  J Cogn Neurosci . 1997;  9 605-610
  • 50 Gorno Tempini L M, Price C J, Josephs O. The neural system sustaining face and proper name processing.  Brain . 1998;  121 2103-2118
  • 51 Damasio A R, Yamada T, Damasio H, Corbett J, McKee J. Central achromatopsia: behavioral, anatomic, and physiological aspects.  Neurology . 1980;  30 1064-1071
  • 52 Zeki S. A century of cerebral achromatopsia.  Brain . 1991;  113 1721-1777
  • 53 Chao L A, Martin A. Cortical regions associated with perceiving, naming and knowing about colors.  J Cogn Neurosc . 1999;  11 25-35
  • 54 Davidoff J. Cognition Through Colours.  Cambridge, MA: MIT Press; 1991
  • 55 Marangolo P, De Renzi E, Di Pace E, Ciurli P, Castriota-Skanderberg A. Let not thy left hand know what thy right hand knoweth: the case of a patient with an infarct involving the callosal pathways.  Brain . 1998;  121 1459-1467
  • 56 Lewandowski M. Ueber Abspaltung des Farbensinnes.  Monatsschr Psychiatr Neurol . 1908;  23 488-510
  • 57 Farah M J, Levine D N, Calvanio R. A case study of mental imagery deficit.  Brain Cogn . 1988;  8 147-164
  • 58 Luzzatti C, Davidoff J. Impaired retrieval of object-colour knowledge with preserved colour naming.  Neuropsychologia . 1994;  32 933-950
  • 59 Goldenberg G, Artner C. Visual imagery and knowledge about the visual appearance of objects in patients with posterior cerebral arteries lesions.  Brain Cogn . 1991;  15 160-1861