Plant Biol (Stuttg) 2000; 2(2): 195-203
DOI: 10.1055/s-2000-13307
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Both Intact Microfilaments and Cortical Microtubules are Involved in the Maintenance of the Growth Rate of Internodal Cells of Nitellopsis

G. L. Zhu, R. Zhu, W. Zhou, Q. Ye, Z. L. Chen, and M. Yuan
  • Biology College, Key Laboratory of Plant Physiology and Biochemistry, Ministry of Agriculture, China Agricultural University, Beijing 100094, China (PRC)Received: May 6, 1999; Accepted: December 14, 1999
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Abstract:

Automatic monitoring, with an eddy-current displacement transducer, treatments with CD and oryzalin separately, and with CD plus oryzalin in combination (CD = 10 mg/l, and oryzalin = 10 ìmol/l) were used to follow the elongation growth of internodal cells of Nitellopsis. These showed similar kinetics in inhibition and recovery tests. Inhibition to growth started about 10 to 15 min after treatment. However, complete inhibition to growth required 2 to 3 h. In contrast to inhibition, growth resumed quickly in the recovery test. Re-growth started after about 10 to 25 min, and recovered to a steady rate after 25 to 40 min following removal of the drugs. In the combined treatment, with only one drug removed, re-growth only occurred when the second drug was also removed. Cell turgor, hydraulic conductivity (Lp), and membrane potential (Em) were measured with the T-EP probe in the drug treatments. The possible involvement of changes in cell turgor, Lp and pH of walls and of cytoplasm in inhibition of growth were excluded. Disruption of MF and MT in internodal cells of Nitellopsis by CD and oryzalin were confirmed under laser-scanning confocal microscopy (Bio-Rad MRC-1024). The results showed that the maintenance of growth rate of internodal cells of Nitellopsis required both intact MF and MT.

Key words:

Elongation growth, MT, MF, T-EP probe, CD, oryzalin, Nitellopsis

Abbreviations:

CD: Cytochalasin D

DMSO: Dimethyl sulfoxide

FCCP: Carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone

Lp: hydraulic conductivity of cells

MF: microfilaments

MT: microtubules

T-EP probe: Turgor/membrane potential probe

XET: Xyloglucan endotransglycosylase

References

  • 01 Baskin,  T. L., and Wilson,  J. E.. (1997);  Inhibitors of protein kinases and phosphatases alter root morphology and disorganize cortical microtubules.  Plant Physiol.. 113 493-502
  • 02 Cleland,  R. E.,, Buckley,  G.,, Nowbar,  S.,, Lew,  N.,, Steinmetz,  C.,, Evens,  M.,, and Rayle,  D. L.. (1991);  The pH profile for acid induced elongation of coleoptile and epicotyl sections is consistant with the acid growth theory.  Planta. 186 70-74
  • 03 Cosgrove,  D. J.. (1996);  Plant cell enlargement and the action of expansins.  BioEssays. 18 533-540
  • 04 Cyr,  R. J.. (1994);  Microtubules in plant morphogenesis: role of the cortical array.  Annu. Rev. Cell Biol.. 10 153-180
  • 05 Derksen,  J.,, Rutten,  T.,, Van Amstel,  T.,, De Win,  A.,, Doris,  F.,, and Steer,  M.. (1995);  Regulation of pollen tube growth.  Acta Bot. Neerl.. 44 93-119
  • 06 Doonan,  J. H.,, Cove,  D. J.,, and Lloyd,  C. W.. (1988);  Microtubules and microfilaments in tip growth: evidence that microtubules impose polarity on protonemal growth in Physcomitrella patens. .  J. Cell Sci.. 89 533-540
  • 07 Fry,  S. C.. (1989);  Cellulose, hemicellulose and auxin-stimulated growth: a possible relationship.  Physiol. Plant. 75 532-536
  • 08 Fry,  S. C.,, Smith,  R. C.,, Renwick,  K. F.,, Martin,  D. J.,, Hodge,  S. K.,, and Matthews,  K. J.. (1992);  Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants.  Biochem. J.. 282 821-828
  • 09 Giddings,  T. H., and Staehelin,  L. A.. (1991) Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. The Cytoskeletal Basis of Plant Growth and Form. Lloyd, C. W., ed. London; Academic 85-99
  • 10 Green,  P. B.. (1960);  Multinet growth in the wall of Nitella. .  J. Biophys. Biochem. Cytol.. 7 289-297
  • 11 Green,  P. B.. (1980);  Organogenesis - a biophysical view.  Annu. Rev. Plant Physiol.. 31 51-82
  • 12 Green,  P. B.,, Erickson,  R. O.,, and Buggy,  J.. (1971);  Metabolic and physical control of cell elongation rate. In vivo studies in Nitella. .  Plant Physiol.. 47 423-430
  • 13 Hepler,  P. K., and Hush,  J. M.. (1996);  Behavior of microtubules in living plant cells.  Plant Physiol.. 112 445-461
  • 14 Kropf,  D. L.,, Williamson,  R. E.,, and Wasteneys,  G. O.. (1997);  Microtubules orientation and dynamics in elongating Characean internodal cells following cytosolic acidification, introduction of pH bands, or premature growth.  Protoplasma. 197 188-198
  • 15 Lancelle,  S. A., and Hepller,  P. K.. (1988);  Cytochalasin induced ultrastructural alterations in Nicotiana pollen tubes.  Protoplasma Suppl.. 2 65-75
  • 16 Lockhard,  J. A.. (1965);  An analysis of irreversible plant cell elongation.  J. Theor. biol.. 8 264-275
  • 17 Pierson,  E. S., and Cresti,  M.. (1992);  Cytoskeleton and cytoplamic organization of pollen and pollen tubes.  Int. Rev. Cytol.. 140 73-125
  • 18 Probine,  M. C., and Preston,  R. D.. (1962);  Cell growth and the structure and mechanical properties of the wall in internodal cells of Nitella opaca. Mechanical properties of the walls.  J. Exp. Bot.. 13 111-127
  • 19 Proseus,  T. E.,, Ortega,  J. K. E.,, and Boyer,  J. S.. (1999);  Separating growth from elastic deformation during cell enlargement.  Plant Physiol.. 119 775-784
  • 20 Rayle,  D. L., and Cleland,  R. E.. (1992);  The acid growth theory of auxin-induced cell elongation is alive and well.  Plant Physiol.. 99 1271-1274
  • 21 Sievers,  A.,, Kramer-Fischer,  M.,, Braun,  M.,, and Buchen,  B.. (1991);  The polar organization of the growing Chara rhizoid and the transport of statolith are actin dependent.  Bot. Acta. 104 103-109
  • 22 Steudle,  E.. (1993) Pressure probe techniques: basic principles and solute relations at the cell tissue and organ level. Water deficits: plant responses from cell to community . Smith, J. A. C. and Griffith, H., eds. Oxford; Bios Scientific Publishers 5-36
  • 23 Traas,  J. A.,, Doonan,  J. H.,, Rawlins,  D. J.,, Shaw,  P. J.,, Watts,  J.,, and Lloyd,  C. W.. (1987);  An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus.  The Journal of Cell Biology. 105 387-395
  • 24 Vaughn,  K. C., and Lehnen,  L. P. Jr.. (1991);  Mitotic disrupter herbicides.  Weed Sci.. 39 450-457
  • 25 Wasteneys,  G. O.,, Collings,  D. A.,, Gunning,  B. E. S.,, Hepler,  P. K.,, and Menzel,  D.. (1996);  Actin in living and fixed characean internodal cells: identification of a cortical array of fine actin strands chloroplast actin rings.  Protoplasma. 190 25-38
  • 26 Wasteneys,  G. O.,, Gunning,  B. E. S.,, and Hepler,  P. K.. (1993);  Microinjection of fluorescent brain tubulin reveals dynamic properties of cortical microtubules in living plant cells.  Cell Motil. Cytoskeleton. 24 205-213
  • 27 Wymer,  C. L.,, Wymer,  C. A.,, Cosgrove,  D. J.,, and Cyr,  R. J.. (1996);  Plant cell growth responds to external forces and the response requires intact microtubules.  Plant Physiol.. 110 425-430
  • 28 Zhu,  G. L.. (1996);  A new turgor/membrane potential probe simultaneously measures turgor and electrical membrane potential.  Bot. Acta. 109 51-56
  • 29 Zhu,  G. L., and Boyer,  J. S.. (1992);  Enlargement in Chara studied with a turgor clamp: growth rate is not determined by turgor.  Plant Physiol.. 100 2071-2080
  • 30 Zimmermann,  U., and Steudle,  E.. (1975);  The hydraulic conductivity and volumetric elastic modulus of cells and isolated cell walls of Nitella and Chara spp: pressure and volume effects.  Aust. J. Plant Physiol.. 2 1-12

G. L. Zhu

Biology College

Key Laboratory of Plant Physiology and Biochemistry

Ministry of Agriculture

China Agricultural University

Beijing 100094

China (PRC)

guoli@public.east.cn.net

Section Editor: T. Nagata

    >