Plant Biol (Stuttg) 2000; 2(6): 624-627
DOI: 10.1055/s-2000-16637
Original Paper
Georg Thieme Verlag Stuttgart ·New York

A Comparison of CO2 Uptake by the Green Algae Tetraedron minimum and Chlamydomonas monoica

E. van Hunnik 1 , H. van den Ende 1 , K. R. Timmermans 2 , P. Laan 2 , J. W. de Leeuw 2
  • 1 Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
  • 2 Netherlands Institute for Research of the Sea (NIOZ), Den Burg, Texel, The Netherlands
Further Information

Publication History

February 10, 2000

September 2, 2000

Publication Date:
27 August 2001 (online)

Abstract

The ability of the green alga Tetraedron minimum to acquire inorganic carbon from its environment was investigated and compared with that of Chlamydomonas monoica. T. minimum showed a higher affinity for bicarbonate ions than C. monoica, regardless of whether it was grown at high or low CO2 concentrations. Furthermore, T. minimum was distinguished by the fact that it maintained a large intracellular pool of inorganic carbon. These features may explain why this alga is able to proliferate in alkaline conditions.

Abbreviations

CCM: carbon concentrating mechanism

Ci: inorganic carbon

AZ: acetazolamide

EZ: ethoxyzolamide

Rubisco: ribulose bisphosphate carboxylase

BTP: bis-tris-propane

References

  • 01 Amoroso,  G.,, Sültemeyer,  D.,, Thyssen,  C.,, and Fock,  H. P.. (1998);  Uptake of HCO3 - and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. .  Plant Physiol.. 116 193-201
  • 02 Badger,  M. R., and Price,  G. D.. (1994);  The role of carbonic anhydrase in photosynthesis.  Ann. Rev. Plant Physiol Plant Mol. Biol.. 45 369-392
  • 03 Badger,  M. R.,, Kaplan,  A.,, and Berry,  J. A.. (1980);  Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for a carbon dioxide concentrating mechanism.  Plant Physiol.. 66 407-413
  • 04 Falkowski,  P. G.. (1997);  The paradox of carbon dioxide efflux.  Current Biol.. 7 R637-R639
  • 05 Freeman,  K. H.,, Hayes,  J. M.,, Trendel,  J.-M., and Albrecht,  P.. (1990);  Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons.  Nature. 343 254-256
  • 06 Fock,  H. P., and Sültemeyer,  D. F.. (1989) O2 evolution and uptake measurements in plant cells by mass spectrometry. Modern methods of Plant Analysis, Vol. 9. Linskens, H. F. and Jackson, J. F., eds. Heidelberg, Germany; Springer-Verlag pp. 3-18
  • 07 Gorth,  K.,, de Leeuw,  J. W.,, Puttman,  W.,, and Tegelaar,  E. W.. (1988);  Origin of Messel oil shale kerogen.  Nature. 336 759-761
  • 08 Harris,  E. H.. (1989) The Chlamydomonas Sourcebook. A comprehensive guide to Biology and Laboratory Use. San Diego, ISBN 0 12 326880; Academic Press, Inc.
  • 09 Hayes,  J. M.. (1993);  Factors controlling 13C contents of sedimentary organic compounds: principles and evidence.  Marine Geology. 113 111-125
  • 10 Kates,  J. R., and Jones,  R. F.. (1964);  The control of gametic differentiation in liquid cultures of Chlamydomonas. .  J. Cell Comp. Physiol.. 63 157-163
  • 11 Kovácik,  L.. (1975);  Taxonomic revision of the genus Tetraedron (Chlorococcales).  Arch. Hydrobiol.. Suppl. 46 354-359
  • 12 Palmqvist,  K.,, Yu,  J.-W.,, and Badger,  M. R.. (1994);  Carbonic anhydrase activity and inorganic carbon fluxes in low- and high-Ci cells of Chlamydomonas reinhardtii and Scenedesmus obliquus. .  Physiol. Plantarum. 90 537-547
  • 13 Pocker,  Y., and Stone,  J. T.. (1967);  The catalytic versatility of erythrocyte carbonic anhydrase. III. Kinetic studies of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate.  Biochemistry. 6 668-678
  • 14 Starr,  R. C.. (1954);  Reproduction by zoospores in Tetraedron bitridens. .  Am. J. Botany. 41 17-20
  • 15 Sültemeyer,  D. F.,, Miller,  A. G.,, Espie,  G. S.,, Fock,  H. P.,, and Canvin,  D. T.. (1989);  Active CO2 transport by the green alga Chlamydomonas reinhardtii. .  Plant Physiol.. 89 1313-1319
  • 16 Sültemeyer,  D. F.,, Schmidt,  C.,, and Fock,  H. P.. (1993);  Carbonic anhydrases in higher plants and aquatic microorganisms.  Physiol. Plantarum. 88 179-190
  • 17 Wilbur,  K. M., and Andersen,  N. G.. (1948);  Electrometric and colorimetric determination of carbonic anhydrase.  J. Biol. Chem.. 176 147-154

E. van Hunnik

Swammerdam Institute for Life Sciences
University of Amsterdam

Kruislaan 318
1098 SM Amsterdam
The Netherlands

Email: hunnik@bio.uva.nl

Section Editor: A. M. Emons