Subscribe to RSS
DOI: 10.1055/s-2000-16637
A Comparison of CO2 Uptake by the Green Algae Tetraedron minimum and Chlamydomonas monoica
Publication History
February 10, 2000
September 2, 2000
Publication Date:
27 August 2001 (online)
Abstract
The ability of the green alga Tetraedron minimum to acquire inorganic carbon from its environment was investigated and compared with that of Chlamydomonas monoica. T. minimum showed a higher affinity for bicarbonate ions than C. monoica, regardless of whether it was grown at high or low CO2 concentrations. Furthermore, T. minimum was distinguished by the fact that it maintained a large intracellular pool of inorganic carbon. These features may explain why this alga is able to proliferate in alkaline conditions.
Abbreviations
CCM: carbon concentrating mechanism
Ci: inorganic carbon
AZ: acetazolamide
EZ: ethoxyzolamide
Rubisco: ribulose bisphosphate carboxylase
BTP: bis-tris-propane
Key words
Carbon concentrating mechanism - Tetraedron - Chlamydomonas - carbonic anhydrase
References
- 01 Amoroso, G.,, Sültemeyer, D.,, Thyssen, C.,, and Fock, H. P.. (1998); Uptake of HCO3 - and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. . Plant Physiol.. 116 193-201
- 02 Badger, M. R., and Price, G. D.. (1994); The role of carbonic anhydrase in photosynthesis. Ann. Rev. Plant Physiol Plant Mol. Biol.. 45 369-392
- 03 Badger, M. R.,, Kaplan, A.,, and Berry, J. A.. (1980); Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for a carbon dioxide concentrating mechanism. Plant Physiol.. 66 407-413
- 04 Falkowski, P. G.. (1997); The paradox of carbon dioxide efflux. Current Biol.. 7 R637-R639
- 05 Freeman, K. H.,, Hayes, J. M.,, Trendel, J.-M., and Albrecht, P.. (1990); Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature. 343 254-256
-
06 Fock, H. P., and Sültemeyer, D. F.. (1989)
O2 evolution and uptake measurements in plant cells by mass spectrometry. Modern methods of Plant Analysis, Vol. 9. Linskens, H. F. and Jackson, J. F., eds. Heidelberg, Germany; Springer-Verlag pp. 3-18 - 07 Gorth, K.,, de Leeuw, J. W.,, Puttman, W.,, and Tegelaar, E. W.. (1988); Origin of Messel oil shale kerogen. Nature. 336 759-761
- 08 Harris, E. H.. (1989) The Chlamydomonas Sourcebook. A comprehensive guide to Biology and Laboratory Use. San Diego, ISBN 0 12 326880; Academic Press, Inc.
- 09 Hayes, J. M.. (1993); Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Marine Geology. 113 111-125
- 10 Kates, J. R., and Jones, R. F.. (1964); The control of gametic differentiation in liquid cultures of Chlamydomonas. . J. Cell Comp. Physiol.. 63 157-163
- 11 Kovácik, L.. (1975); Taxonomic revision of the genus Tetraedron (Chlorococcales). Arch. Hydrobiol.. Suppl. 46 354-359
- 12 Palmqvist, K.,, Yu, J.-W.,, and Badger, M. R.. (1994); Carbonic anhydrase activity and inorganic carbon fluxes in low- and high-Ci cells of Chlamydomonas reinhardtii and Scenedesmus obliquus. . Physiol. Plantarum. 90 537-547
- 13 Pocker, Y., and Stone, J. T.. (1967); The catalytic versatility of erythrocyte carbonic anhydrase. III. Kinetic studies of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry. 6 668-678
- 14 Starr, R. C.. (1954); Reproduction by zoospores in Tetraedron bitridens. . Am. J. Botany. 41 17-20
- 15 Sültemeyer, D. F.,, Miller, A. G.,, Espie, G. S.,, Fock, H. P.,, and Canvin, D. T.. (1989); Active CO2 transport by the green alga Chlamydomonas reinhardtii. . Plant Physiol.. 89 1313-1319
- 16 Sültemeyer, D. F.,, Schmidt, C.,, and Fock, H. P.. (1993); Carbonic anhydrases in higher plants and aquatic microorganisms. Physiol. Plantarum. 88 179-190
- 17 Wilbur, K. M., and Andersen, N. G.. (1948); Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem.. 176 147-154
E. van Hunnik
Swammerdam Institute for Life Sciences
University of Amsterdam
Kruislaan 318
1098 SM Amsterdam
The Netherlands
Email: hunnik@bio.uva.nl
Section Editor: A. M. Emons