Plant Biol (Stuttg) 2000; 2(3): 272-277
DOI: 10.1055/s-2000-3699
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Phenolic and Oxidative Metabolism as Bioindicators of Nitrogen Deficiency in French Bean Plants (Phaseolus vulgaris L. cv. Strike)

E. Sánchez 1 , J. M. Soto 2 , P. C. García 1 , L. R. López-Lefebre 1 , R. M. Rivero 1 , J. M. Ruiz 1 , L. Romero 1
  • 1 Department of Plant Biology, Faculty of Sciences, University of Granada, Granada, Spain
  • 2 Department of Agrotechnology Science, University of Chihuahua, Chihuahua, México
Further Information

Publication History

November 12, 1999

February 1, 2000

Publication Date:
31 December 2000 (online)

Abstract

The aim of the present work was to determine the effect of abiotic stress, such as nitrogen (N) deficiency, on phenol and oxidative metabolism. In addition, we analyzed whether the response of the two metabolic processes is a good bioindicator of N deficiency in French bean plants. The N was applied to the nutrient solution in the form of NH4NO3 at 1.35 mM (N1), 2.7 mM (N2) and 5.4 mM (N3), this latter dosage being considered optimal. The results indicated that application of 1.35 and 2.70 mM of N can be defined as suboptimal or deficient, as it depressed foliar biomass of the French bean plants in our experiment. In addition, abiotic stress from the application of these N dosages stimulated the enzymes PPO, POD and CAT, and inhibited PAL and SOD activities, resulting in the lowest foliar accumulation of phenolic compounds and H2O2.

Abbreviations

AOS: active oxygen species

CAT: catalase

DW: dry weight

EDDHA: ethylenediamine-di(o-hydroxyphenylacetic acid)

FW: fresh weight

PAL: phenylalanine ammonia-lyase

POD: peroxidase

PPO: polyphenol oxidase

SOD: superoxide dismutase

References

  • 01 Ågren,  G. I.. (1985);  Theory for growth of plants derived from the nitrogen productivity concept.  Physiol. Plant. 64 17-28
  • 02 Badiani,  M.,, De Biasi,  M. G.,, and Felici,  M.. (1990);  Soluble peroxidase from winter wheat seedlings with phenoloxidase-like activity.  Plant Physiol.. 93 489-494
  • 03 Barber,  M. S., and Mitchell,  H. S.. (1997);  Regulation of phenylpropanoid metabolism in relation to lignin biosynthesis in plants.  Int. Rev. Cytol.. 172 243-293
  • 04 Beyer,  W. F., and Fridovich,  I.. (1987);  Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions.  Anal. Biochem.. 161 559-566
  • 05 Bolwell,  G. P., and Wojtaszek,  P.. (1997);  Mechanisms for the generation of reactive oxygen species in plant defense - a broad perspective.  Physiol. Mol. Plant Pathol.. 51 347-366
  • 06 Bowler,  C. M.,, Van Montagu,  M.,, and Inzé,  D.. (1992);  Superoxide dismutase and stress tolerance.  Annu. Rev. Plant Physiol. Plant Mol. Biol.. 43 83-116
  • 07 Bradford,  M. M.. (1976);  A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal. Biochem.. 72 248-254
  • 08 Brennan,  T., and Frenkel,  C.. (1977);  Involvement of hydrogen peroxide in the regulation of senescence in pear.  Plant Physiol.. 59 411-416
  • 09 Burns,  I. G.. (1992);  Influence of plant nutrient concentration on growth rate: use of a nutrient interruption technique to determine critical concentrations of N, P and K in young plants.  Plant Soil. 142 221-233
  • 10 Cakmak,  I., and Römheld,  V.. (1997);  Boron deficiency-induced impairments of cellular functions in plants.  Plant Soil. 193 71-83
  • 11 Campa,  A.. (1991) Biological roles of plant peroxidases: known and essential function. Peroxidases in Chemistry and Biology, Vol. II. Everse, J., Everse, K., and Grisham, M. B., eds. Boca Raton, FL; CRC Press pp. 25-50
  • 12 Carbonell-Barrachina,  A. C.,, Burló-Carbonell,  F.,, and Mataix-Beneyto,  J.. (1997);  Effect of sodium arsenite and sodium chloride on bean plant nutrition (macronutrients).  J. Plant Nutrition. 20 1617-1633
  • 13 Carbonell-Barrachina,  A. C.,, Burló-Carbonell,  F.,, and Mataix-Beneyto,  J.. (1998);  Response of bean micronutrient nutrition to arsenic and salinity.  J. Plant Nutrition. 21 1287-1299
  • 14 Curir,  P.,, VanSumere,  C. F.,, Termini,  A.,, Barthe,  P.,, Marchesini,  A.,, and Dolci,  M.. (1990);  Flavonoid accumulation is correlated with adventitious root formation in Eucalyptus gunnii Hook micropropagated through axillary bud stimulation.  Plant Physiol.. 92 1148-1153
  • 15 Cheng,  G. W., and Crisoto,  C. H.. (1995);  Browning potential, phenolic composition, and polyphenoloxidase activity of buffer extracts of peach and nectarine skin tissue.  J. Amer. Soc. Hort. Sci.. 120 835-838
  • 16 Delalonde,  M.,, Barret,  Y.,, and Coumans,  M. P.. (1996);  Development of phenolic compounds in maize anthers (Zea mays) during cold pretreatment prior to androgenesis.  J. Plant Physiol.. 149 612-616
  • 17 Dixon,  R. A., and Paiva,  N. L.. (1995);  Stress induced phenylpropanoid metabolism.  Plant Cell. 7 1085-1097
  • 18 Dübeler,  A.,, Voltmer,  G.,, Gora,  V.,, Lunderstädt,  J.,, and Zeeck,  A.. (1997);  Phenols from Fagus sylvatica and their role in defense against Cryptococcus fagisuga. .  Phytochemistry. 45 51-57
  • 19 Foyer,  C. H.,, Descourvieres,  P., and Kunert,  K. J.. (1994);  Protection against oxygen radicals: an important defense mechanism studied in transgenic plants.  Plant Cell Environ.. 17 507-523
  • 20 Gaspar,  T. H.,, Penel,  C.,, Hagega,  D.,, and Greppin,  H.. (1991) Peroxidases in plant growth, differentiation and development processes. Biochemical, Molecular and Physiological Aspects of Plant Peroxidases. Lobarzewski, J., Greppin, H., Penel, C., and Gaspar, T. H., eds. Geneva, Switzerland; University of Geneva pp. 249-280
  • 21 Giannopolitis,  C. N., and Ries,  S. K.. (1977);  Superoxide dismutase occurrence in higher plants.  Plant Physiol.. 59 309-314
  • 22 Hao,  Z.,, Charles,  D. J.,, Yu,  L.,, and Simon,  J. E.. (1996);  Purification and characterization of a phenylalanine ammonia-lyase from Ocimum basilicum. .  Phytochemistry. 43 735-739
  • 23 Inzé,  D., and Van Montagu,  M.. (1995);  Oxidative stress in plants.  Current Opinions in Biotechnology. 6 153-158
  • 24 Jones,  D. H.. (1984);  Phenylalanine ammonia-lyase: regulation of its induction and its role in plant development.  Phytochemistry. 23 1349-1359
  • 25 Kawai,  T.,, Hikawa,  M.,, and Ono,  Y.. (1995);  Effects of calcium sulfate and sublimed sulfur on incidence of internal browning in roots of Japanese radish.  J. Jpn. Soc. Hort. Sci.. 64 79-84
  • 26 Kalir,  A.,, Omri,  G.,, and Poljakoff-Mayber,  A.. (1984);  Peroxidase and catalase activity in leaves of Halimione portulacoides exposed to salinity.  Physiol. Plant. 62 238-244
  • 27 Keller,  M., and Hrazdina,  G.. (1998);  Interaction of nitrogen availability during bloom and ligth intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening.  Am. J. Enol. Viticult.. 49 341-349
  • 28 Kevers,  C.,, Coumans,  M.,, Coumans-Gillés,  M.,, and Gaspar,  T.. (1984);  Physiological and biochemical events leading to vitrification of plants cultured in vitro. .  Physiol. Plant. 61 69-74
  • 29 Kim,  T. W., and Heinrich,  G.. (1997);  Effect of strontium on chlorophyll content, peroxidase activity, and iron distribution in cell walls.  J. Plant Nutrition. 20 255-269
  • 30 Kwak,  S. S.,, Kim,  S. K.,, Park,  I. H.,, and Liu,  J. R.. (1996);  Enhancement of peroxidase activity by stress-related chemicals in sweet potato.  Phytochemistry. 43 565-568
  • 31 Lister,  C. E.,, Lancaster,  J. E.,, and Walker,  J. R. L.. (1996);  Phenylalanine ammonia-lyase activity and its relationship to anthocyanin and flavonoid levels in New Zealand-grown apple cultivars.  J. Am. Soc. Hort. Sci.. 121 281-285
  • 32 Mattson,  M.,, Lundborg,  T.,, Larsson,  M.,, and Larsson,  C. M.. (1991);  Nitrogen utilization in N-limited barley during vegetative and generative cultures grown at different relative addition rates of nitrate-N.  J. Exp. Bot.. 43 15-23
  • 33 MacNevin,  W. M., and Uron,  P. F.. (1953);  Separation of hydrogen peroxide from organic hydroperoxides.  Anal. Chem.. 25 1760-1761
  • 34 McCallum,  J. A., and Walker,  J. R. L.. (1990);  Phenolic biosynthesis during grain development in wheat: change in phenylalanine ammonia-lyase activity and soluble phenolic content.  J. Cereal Sci.. 11 35-49
  • 35 McConchie,  R.,, Lang,  N. S.,, Lax,  A. R.,, and Lang,  G. A.. (1994);  Reexamining polyphenoloxidase, peroxidase and leaf-blackening activity in Protea.  J. Amer. Soc. Hort. Sci.. 119 1248-1254
  • 36 Mehdy,  M. C.. (1994);  Active oxygen species in plant defense against pathogens.  Plant Physiol.. 105 467-472
  • 37 Molina,  A.,, Hunt,  M. D.,, and Ryals,  J. A.. (1998);  Impaired fungicide activity in plants blocked in disease resistance signal transduction.  Plant Cell. 10 1903-1914
  • 38 Nagarathna,  K. C.,, Shetty,  S. A.,, and Shetty,  H. S.. (1993);  Phenylalanine ammonia-lyase activity in pearl millet seedlings and its relation to downy mildew disease resistance.  J. Exp. Bot.. 44 1291-1296
  • 39 Nemat Allah,  M. M., and Younis,  M. E.. (1995);  Herbicide effects on phenolic metabolism in maize (Zea mays) and soybean (Glycine max): Persistence and biochemical signs of stress during its detoxification.  J. Agric. Food Chem.. 40 884-889
  • 40 Nicoli,  M. C.,, Elizalde,  B. E.,, Pitotti,  A.,, and Lerici,  C. R.. (1991);  Effect of sugars and Maillard reaction products on polyphenol oxidase and peroxidase activity in food.  J. Food Biochem.. 15 169-184
  • 41 Paranhos,  A.,, Fernández-Tárrago,  J.,, and Corchete,  P.. (1999);  Relationship between active oxygen species and cardenolide production in cell cultures of Digitalis thapsi: effect of calcium restriction.  New Phytol.. 141 51-60
  • 42 Pillinger,  J. M.,, Coope,  J. A.,, and Ridge,  I.. (1994);  Role of phenolic compounds in the antialgal activity of barley straw.  J. Chem. Ecol.. 20 1557-1569
  • 43 Rao,  M. V.,, Paliyath,  G.,, and Ormrod,  D. P.. (1996);  Ultaviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. .  Plant Physiol.. 110 125-136
  • 44 Rao,  M. V.,, Paliyath,  G.,, Ormrod,  D. P.,, Murr,  D. P.,, and Watkins,  C. B.. (1997);  Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes: Salicylic acid-mediated oxidative damage requires H2O2.  Plant Physiol.. 115 137-149
  • 45 Rösler,  J.,, Krekel,  F.,, Amrhein,  N.,, and Schmid,  J.. (1997);  Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity.  Plant Physiol.. 113 175-179
  • 46 Ruiz,  J. M.,, Bretones,  G.,, Baghour,  M.,, Belakbir,  A.,, and Romero,  L.. (1998);  Relationship between boron and phenolic metabolism in tobacco leaves.  Phytochemistry. 48 269-272
  • 47 Ruiz,  J. M.,, Garcia,  P. C.,, Rivero,  R. M.,, and Romero,  L.. (1999);  Response of phenolic metabolism to the application of carbendazim plus boron in tobacco.  Physiol. Plant. 106 151-157
  • 48 Scarponi,  L.,, Nemat Allah,  M.,, and Martinetti,  L.. (1992);  Metolachlor in corn (Zea mays) and soybean (Glycine max): Persistence and biochemical signs of stress during its detoxification.  J. Agric. Food Chem.. 40 884-889
  • 49 Singleton,  V. L., and Rossi,  J. A.. (1965);  Colorimetric analysis of total phenolics with phosphomolybdic-phosphotungstic acid reagents.  Am. J. Enol. Viticult.. 16 144-158
  • 50 Singleton,  V. L.,, Salgues,  M.,, Zaya,  J.,, and Trousdale,  E.. (1985);  Caftaric acid disappearance and conversion to products of enzymatic oxidation in grape most and wine.  Am. J. Enol. Viticult.. 36 50-56
  • 51 Smith-Becker,  J.,, Marois,  E.,, Huguet,  E. J.,, Midland,  S. L.,, Sims,  J. J.,, and Keen,  N. T.. (1998);  Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems.  Plant Physiol.. 116 231-238
  • 52 Söderhäll,  I.. (1995);  Properties of carrot polyphenoloxidases.  Phytochemistry. 39 33-38
  • 53 Solecka,  D., and Kacperska,  A.. (1995);  Phenylalanine ammonia-lyase activity in leaves of winter oilseed rape plants as affected by acclimation of plants to low temperature.  Plant Physiol. Biochem.. 33 585-591
  • 54 Spencer,  D. F., and Ksander,  G. G.. (1994);  Phenolic acid content of vegetative propagules of Potamogeton spp and Hydrilla verticillata. .  J. Aquatic Plant Management. 32 71-73
  • 55 Stout,  M. J.,, Brovont,  R. A.,, and Duffey,  S. S.. (1998);  Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato (Lycopersicon esculentum). .  J. Chemical Ecology. 24 945-963
  • 56 Takahama,  U., and Oniki,  T.. (1992);  Regulation of peroxidase-dependent oxidation of phenols in the apoplast of spinach leaves by ascorbate.  Plant Cell Physiol.. 33 379-387
  • 57 Thipyapong,  P.,, Hunt,  M. D.,, and Steffens,  J. C.. (1995);  Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase.  Phytochemistry. 40 673-676
  • 58 Thipyapong,  P., and Stellens,  J. C.. (1997);  Tomato polyphenol oxidase: Differential response of the polyphenol oxidase F promoter to injuries and wound signals.  Plant Physiol.. 45 409-418
  • 59 Tomasbarberan,  F. A.,, Gil,  M. I.,, Castaner,  M.,, Artes,  F.,, and Salveit,  M. E.. (1997);  Effect of selected browning inhibitors on phenolic metabolism in stem tissue of harvested lettuce.  J. Agricul. Food Chem.. 45 583-589
  • 60 Vaughn,  K. C., and Duke,  S. O.. (1981);  Tentoxin-induced loss of plastidic polyphenol oxidase.  Physiol. Plant. 53 421-428
  • 61 Wojtaszek,  P.. (1997 a);  Mechanisms for generation of reactive oxygen species in plant defense response.  Acta Physiol. Plant. 19 581-589
  • 62 Wojtaszek,  P.. (1997 b);  Oxidative burst: an early plant response to pathogen infection.  Biochem. J.. 322 681-692
  • 63 Wolf,  B.. (1982);  A comprehensive system of leaf analysis and its use for diagnosing crop nutrients status.  Communication Soil Science and Plant Analysis. 13 1035-1059
  • 64 Yu,  Q.,, Osborne,  L.,, and Rengel,  Z.. (1998);  Micronutrient deficiency changes activities of superoxide dismutase and ascorbate peroxidase in tobacco plants.  J. Plant Nutrition. 21 1427-1437
  • 65 Zheng,  X., and Vanhuystee,  R. B.. (1992);  Anionic peroxidase catalyzed ascorbic acid and IAA oxidation in the presence of hydrogen peroxide: A defense system against peroxidative stress in peanut plant.  Phytochemistry. 31 1895-1898
  • 66 Zucker,  M.. (1985);  Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue.  Plant Physiol.. 40 779-784

E. Sánchez

Department of Plant Biology Faculty of Sciences

University of Granada 18071 Granada Spain

Email: lromero@goliat.ugr.es

Section Editor: U. Lüttge