Plant Biol (Stuttg) 2000; 2(3): 290-296
DOI: 10.1055/s-2000-3709
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Distribution of γ-Tubulin in Higher Plant Cells: Cytosolic γ-Tubulin is Part of High Molecular Weight Complexes

V. Stoppin-Mellet 1 , C. Peter 2 , A. M. Lambert 2
  • 1 Present address: Laboratoire de Physiologie Végétale, UMR 5019 CEA-CNRS-Université Joseph Fourier, Département de Biologie Moléculaire et Structurale, Grenoble, France
  • 2 Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique UPR 406, Université Louis Pasteur, Strasbourg, France
Further Information

Publication History

November 13, 1999

March 30, 2000

Publication Date:
31 December 2000 (online)

Abstract

γ-Tubulin is a protein found in all eukaryotic cells, where it plays a key role in the nucleation of microtubules. In higher plant cells, γ-tubulin is localized at the nuclear surface, a known microtubule-organizing centre, and is codistributed with all microtubule arrays. Functions of plant γ-tubulin remain to be determined. This study describes some properties of higher plant γ-tubulin. The overall level of γ-tubulin was constant during the cell cycle in synchronized tobacco BY-2 cells. Biochemical analysis of the subcellular distribution of γ-tubulin in maize cells revealed that, in contrast with animal γ-tubulin, plant γ-tubulin is mainly associated with endomembranes. We showed for the first time that the pool of soluble cytosolic γ-tubulin contained two main γ-tubulin complexes. γ-tubulin, Hsp70 and TCP1-related proteins might interact in a small complex of 750 kDa. A second γ-tubulin complex, larger than 1500 kDa was purified. The protein profile of this large complex was very similar to animal γ-tubulin complexes. The putative functions of these two complexes in plant microtubule nucleation are discussed.

Abbreviations

γTuRC: γ-tubulin ring complex

Hsp: heat shock protein

MTOC: microtubule organizing centre

SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SPB: spindle pole body

TCP1: T-complex polypeptide 1

References

  • 01 Hyman,  A., and Karsenti,  E.. (1998);  The role of nucleation in patterning microtubule networks.  J. Cell Sci.. 111 2077-2083
  • 02 Vantard,  M.,, Stoppin,  V.,, and Lambert,  A. M.. (1997) Cell-cycle dependent nucleation and assembly of plant microtubule proteins. Plant Cell Division. Francis, D., Dudits, D., and Inze, D., eds. London; Portland Press pp. 301-318
  • 03 Stoppin,  V.,, Vantard,  M.,, Schmit,  A. C.,, and Lambert,  A. M.. (1994);  Isolated plant nuclei nucleate microtubule assembly: the nuclear surface in higher plants has centrosome-like activity.  Plant Cell. 6 1099-1106
  • 04 Wasteneys,  G. O.,, Gunning,  B. E. S., , and Hepler,  P. K.. (1993);  Microinjection of fluorescent brain tubulin reveals dynamic properties of cortical microtubules in living plant cells.  Cell Motil. Cytoskeleton. 24 205-213
  • 05 Vaughn,  K. C., and Harper,  J. D. I.. (1998);  Microtubule-organizing centers and nucleating sites in land plants.  Int. Rev. Cytol.. 181 75-149
  • 06 Oakley,  B. R.. (1994) γ-Tubulin. Microtubules, Modern Cell Biol. Hyams, J.S. and Llyod, C.W., eds. New-York; Wiley-Liss pp. 33-45
  • 07 Pereira,  G., and Schiebel,  E.. (1997);  Centrosome-microtubule nucleation.  J. Cell Sci.. 110 295-300
  • 08 Jeng,  R., and Stearns,  T.. (1999);  γ-Tubulin complexes: size does matter.  Trends Cell Biol.. 9 339-342
  • 09 Liu,  B.,, Marc,  J.,, Joshi,  H. C.,, and Palevitz,  B. A.. (1993);  A γ-tubulin related protein associated with the microtubule arrays of higher plant cells in a cell cycle dependent manner.  J. Cell Sci.. 104 1217-1228
  • 10 Liu,  B.,, Joshi,  H. C.,, and Palevitz,  B. A.. (1995);  Experimental manipulation of γ-tubulin distribution in Arabidopsis using anti-microtubule drugs.  Cell Motil. Cytoskeleton. 31 113-129
  • 11 Binarova,  P.,, Hause,  B.,, Dolezel,  J.,, and Draber,  P.. (1998);  Association of γ-tubulin with kinetochore/centromeric region of plant chromosomes.  Plant J.. 14 751-757
  • 12 Joshi,  H. C., and Palevitz,  B. A.. (1996);  γ-Tubulin and microtubule organization in plants.  Trends Cell Biol.. 6 41-44
  • 13 Nagata,  T.,, Nemoto,  Y.,, and Hasezawa,  S.. (1992);  Tobacco BY-2 cell line as the “HeLa” cell in the biology of higher plants.  Int. Rev. Cytol.. 132 1-30
  • 14 Reichheld,  J. P.,, Sonobe,  S.,, Clement,  B.,, Chaubet,  N.,, and Gigot,  C.,. (1995);  Cell cycle-regulated histone gene expression in synchronized plant cells.  Plant J.. 7 245-252
  • 15 Mummert,  E.,, Grimm,  R.,, Speth,  V.,, Eckerskorn,  C.,, Schiltz,  E.,, Gatenby,  A. A.,, and Schafer,  E.. (1993);  A TCP1-related molecular chaperone from plants refolds phytochrome to its photoreversible form.  Nature. 363 644-648
  • 16 Felix,  M. A.,, Antony,  C.,, Wright,  M.,, and Maro,  B.. (1994);  Centrosome assembly in vitro: role of γ-tubulin recruitment in Xenopus aster formation.  J. Cell Biol.. 124 19-31
  • 17 Laemmli,  U. K.. (1970);  Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. 227 680-685
  • 18 O'Farrel,  P. H.. (1975);  High resolution two dimensional electrophoresis of proteins.  J. Biol. Chem.. 250 4007-4012
  • 19 Towbin,  H.,, Staehelin,  T.,, and Gordon,  J.. (1979);  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.  Proc. Natl. Acad. Sci. USA. 76 4350-4354
  • 20 Marchesi,  V. T., and Ngo,  N.. (1993);  In vitro assembly of multiprotein complexes containing α, β and γ tubulin, heat shock protein HSP70, and elongation factor 1α.  Proc. Natl. Acad. Sci. USA. 90 3028-3032
  • 21 Melki,  R.,, Vainberg,  I. E.,, Chow,  R. L.,, and Cowan,  N. J.. (1993);  Chaperonin-mediated folding of vertebrate actin-related protein and γ-tubulin.  J. Cell Biol.. 122 1301-1310
  • 22 Moudjou,  M.,, Bordes,  N.,, Paintrand,  M.,, and Bornens,  M.. (1996);  γ-Tubulin in mammalian cells: the centrosomal and the cytosolic forms.  J. Cell Sci.. 109 875-887
  • 23 Zheng,  Y.,, Wong,  M. L.,, Alberts,  B.,, and Mitchison,  T.. (1995);  Nucleation of microtubule assembly by a γ-tubulin-containing ring complex.  Nature. 378 578-583
  • 24 Detraves,  C.,, Marzaguil,  M. I.,, Lajoie,  M. I.,, Julian,  M.,, Raynaud,  M. B.,, and Wright,  M.. (1997);  Protein complexes containing γ-tubulin are present in mammalian brain microtubule protein preparations.  Cell Motil. Cytoskeleton. 36 179-189
  • 25 Murphy,  S. M.,, Urbani,  L.,, and Stearns,  T.. (1998);  The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components Spc97p and Spc98p.  J. Cell Biol.. 141 663-674
  • 26 Oegema,  K.,, Wiese,  C.,, Martin,  O. C.,, Milligan,  R. A.,, Iwamatsu,  A.,, Mitchison,  T. J.,, and Zheng,  Y.. (1999);  Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules.  J. Cell Biol.. 144 721-733
  • 27 Knop,  M., and Schiebel,  E.. (1997);  Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p.  EMBO J.. 16 6985-6995
  • 28 Cyr,  R. J., and Palevitz,  B. A.. (1995);  Organization of cortical microtubules in plant cells.  Curr. Opin. Cell Biol.. 7 65-71
  • 29 Mazia,  D.. (1987);  The chromosome cycle and the centrosome cycle in the mitotic cycle.  Int. Rev. Cytol.. 100 49-92
  • 30 Liang,  P., and MacRae,  T. H.. (1997);  Molecular chaperones and the cytoskeleton.  J. Cell Sci.. 110 1431-1440
  • 31 Martin,  M. A.,, Osmani,  S. A.,, and Oakley,  B. R.. (1997);  The role of γ-tubulin in mitotic spindle formation and cell cycle progression in Aspergillus nidulans.  J. Cell Sci.. 110 623-633
  • 32 Tassin,  A. M.,, Celati,  M.,, Moudjou,  M.,, and Bornens,  M.. (1998);  Characterization of the human homologue of the yeast Spc98p and its association with γ-tubulin.  J. Cell Biol.. 141 689-701
  • 33 Khodjakov,  A., and Rieder,  C. L.. (1999);  The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules.  J. Cell Biol.. 146 585-596
  • 34 Stoppin-Mellet,  V.,, Peter,  C.,, Buendia,  B.,, Karsenti,  E.,, and Lambert,  A. M.. (1999);  Tobacco BY-2 cell-free extracts induce the recovery of microtubule nucleating activity of inactivated mammalian centrosomes.  Biochim. Biophys. Acta. 1449 101-106
  • 35 Lajoie-Mazenc,  I.,, Tollon,  Y.,, Detraves,  C.,, Julian,  M.,, Moisand,  A.,, Gueth-Hallonet,  C.,, Debec,  A.,, Salles-Passador,  I.,, Puget,  A.,, Mazarguil,  H.,, Raynaud-Messina,  B.,, and Wright,  M.. (1994);  Recruitment of antigenic gamma-tubulin during mitosis in animal cells: presence of gamma-tubulin in the mitotic spindle.  J. Cell Sci.. 107 2825-2837
  • 36 Smirnova,  E. A., and Bajer,  A. S.. (1992);  Spindle poles in higher plant mitosis.  Cell Motil. Cytoskeleton. 23 1-7

V. Stoppin-Mellet

Laboratoire de Physiologie Végétale UMR 5019 CEA-CNRS-Université Joseph Fourier Départment de Biologie Moléculaire et Structurale

CEA-Grenoble 17 rue des martyrs 38054 Grenoble cedex 9 France

Email: vstoppinmellet@cea.fr

Section Editor: A. M. C. Emons