Subscribe to RSS
DOI: 10.1055/s-2000-8250
Pharmakokinetik von Cyclo-phosphamid, Adriamycin und Adramycin-Prodrug (HMR 1826) im ex-vivo-isolierten perfundierten humanen Lungenresektionsmodell (IHLP)[1]
Publication History
Publication Date:
31 December 2000 (online)
Zusammenfassung:
Hintergrund: Über die Pharmakokinetik und lokale Bioverfügbarkeit von Zytostatika und anderen Chemotherapeutika in menschlichen Tumoren ist nur wenig bekannt. Studien hierzu sind aus ethischen Gründen nur sehr schwierig durchzuführen. Methode: Das hier beschriebene Modell des isoliert perfundierten und ventilierten humanen Lungenpräparates (IHLP) ist ein Basismodell für pharmakologische Untersuchungen an tumortragenden Lungenpräparaten, die aus therapeutischen Gründen vom Thoraxchirurgen reseziert werden. Postoperativ wird das Operationspräparat ex vivo unter physiologischen Bedingungen reperfundiert und ventiliert. Ergebnisse: In einer ersten Untersuchungsphase wurde sichergestellt, dass die Reperfusion die morphologische Diagnose und das Staging nicht beeinträchtigt. Weitere Untersuchungen galten der Pharmakokinetik von Cyclophosphamid, Adriamycin sowie HMR 1826, einer Adriamycin-Prodrug. Die Endkonzentration von Cyclophosphamid und Adriamycin nach Perfusion lag im Tumor um eine Größenordnung unter der im normalen Lungengewebe. Im Gegensatz dazu konnten mit HMR 1826 durch tumorselektive Aktivierung vergleichbare Konzentrationen an Adriamycin im Tumor und im normalen Lungengewebe erreicht werden. Schlussfolgerung: Im medizinischen Modellsystem hat sich das IHLP als idealer Zwischenschritt zwischen der Zellkultur und der In-vivo-Situation bei der Untersuchung humaner Tumoren ausgezeichnet. Weitere Einsatzmöglichkeiten des Modells und dessen Grenzen werden zukünftig zu definieren sein.
Pharmacokinetics of Cyclophosphamid, Adriamycin and Adramycin-Prodrug (HMR 1826) using the Ex-vivo Isolated Perfused Human Lungmodel (IHLP):
Background: Today knowledge about pharmacokinetics of anticancer drugs in human malignant tumors is poor. Data from in vivo studies are limited and difficult to obtain due to ethical aspects. An ex vivo isolated perfused and ventilated human lung model however allows pharmacological studies of human bronchial carcinoma inside their host organ, the lung, under physiological conditions without compromising the patient. Methods: Following surgery for bronchial carcinoma human lung preparations were reperfused and ventilated extracorporally for 2 - 3 hours. During the reperfusion anticancer drugs are added to the perfusion solution and their uptake into tumor, normal lung tissue, and lymph nodes is studied. Results: An initial study showed that lung reperfusion under physiological circumstances over a period of 2 - 3 hours did not interfere with histo-pathological diagnostics and staging; an important precondition for potential adjuvant treatment. Pharmacokinetics of cyclophosphamid, adriamycin, and a water soluble adriamycin prodrug (HMR 1826) were measured. Final tissue concentrations of adriamycin and cyclophosphamid in peripheral lung parenchyma turned out to be 10 times higher compared to tumor tissue. However, following perfusion with adriamycin prodrug final tissue concentrations of adriamycin were in the same range in lung and tumor. Conclusions: The ex-vivo isolated human lung perfusion model (IHLP) has proven to be an ideal scientific model for pharmacological investigations of human tumors as an intermediate step between cell culture and in-vivo situation without any disadvantage for the patient. The tumor-to-host interaction is completely saved in this model. However, first pass reactions of drugs in other organs must not play a role for the substances studied with the IHLP. The role and future applications of the isolated perfused human lung model for other indications is discussed.
Key words:
Isolated lung perfusion - Lung cancer - Anticancer drugs
Literatur
- 1 Johnston M R, Minchin R, Shull J H, Thenot J P, McManus B M, Terrill R, Boyd M R. Isolated lung perfusion with adriamycin: a preclinical study. Cancer. 1983; 52 404-409
- 2 Kanekal S, Plopper C, Morin D, Buckpitt A. Metabolic activation and bronchiolar Clara cell necrosis from naphtalene in the isolated perfused mouse lung. J Pharmacol Exp Ther. 1990; 252 428-437
- 3 Kröll F, Karlsson J A, Nilsson E, Persson C GA, Ryrfeldt A. Lung mechanics of the guinea-pig isolated perfused lung. Acta Physiol Scand. 1986; 128 1-8
- 4 Rickaby D A, Fehring J F, Johnston M R, Dawson C A. Tolerance of the isolated perfused lung to hyperthermia. J Thorac Cardiovasc Surg. 1991; 101 732-739
- 5 Seeger W, Walmrath D, Grimminger F, Rosseau S, Schutte H, Kramer H J, Ermert L, Kiss L. Adult respiratory distress syndrome: model systems using isolated perfused rabbit lungs. Methods Enzymol. 1994; 233 549-584
- 6 Weksler B, Burt M. Isolated lung perfusion with antineoplastic agents for pulmonary metastases. Chest Surg. Chest Surg Clin N Am. 1998; 8 157-182
- 7 Weksler B, Ng B, Lenert J T, Burt M E. Isolated single-lung perfusion: a study of the optimal perfusate and other pharmacokinetic factors. Ann Thorac Surg. 1995; 60 624-629
- 8 Barabas K, Sizensky J A, Faulk W P. Transferrin conjugates of adriamycin are cytotoxic without intercalating nuclear DNA. J Biol Chem. 1992; 267 9437-9442
- 9 Trail P A, Willner D, Lasch S J, Henderson A J, Greenfield R S, King D, Zoeckler M E, Braslawsky G R. Antigen-specific activity of carcinoma-reactive BR64-doxorubicin conjugates evaluated in vitro and in human tumor xenograft models. Cancer Res. 1992; 52 5693-5700
- 10 Galun E, Shouval D, Adler R, Shahaar M, Wilchek M, Hurwitz E, Sela M. The effect of α-Fetoprotein-adriamycin conjugate on a human hepatoma. Hepatology. 1990; 11 578-584
- 11 Shih L B, Goldenberg D M, Xuan H, Lu H, Sharkey R M, Hall T C. Anthracycline immunoconjugates prepared by a site-specific linkage via an amino-dextran intermediate carrier. Cancer Res. 1991; 51 4192-4198
- 12 Linder A, Friedel G, Fritz P, Kivisto K T, McClellan M, Toomes H. The ex-vivo isolated, perfused human lung model: description and potential applications. Thorac Cardiovasc Surg. 1996; 44 140-146
- 13 Gervot L, Rochat B, Gautier J C, Bohnenstengel F, Kroemer H, de Berardinis V, Martin H, Beaune P, de Waziers I. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics. 1999; 9 295-306
- 14 Kivisto K T, Griese E U, Fritz P, Linder A, Hakkolo J, Raunio H, Beaune P, Kroemer H K. Expression of cytochrome P 450 3A enzymes in human lung: a combined RT-PCR and immunohistochemical analysis of normal tissue and lung tumours. Naunyn Schmiedebergs Arch Pharmacol. 1996; 353 207-212
- 15 Mürdter T E, Sperker B, Kivistö K T, McClellan M, Fritz P, Friedel G, Linder A, Bosslet K, Toomes H, Dierkesmann R, Kroemer H K. Enhanced uptake of doxorubicin into bronchial carcinoma: beta-glucuronidase mediates release of doxorubicin from a glucuronide prodrug (HMR 1826) at the tumor site. Cancer Res. 1997; 57 2440-2445
- 16 Bosslet K, Czech J, Hoffmann D. Tumor-selective prodrug activation by fusion protein-mediated catalysis. Cancer Res. 1994; 54 2151-2159
- 17 Bohnenstengel F, Friedel G, Ritter C A, McClellan M, Fritz P, Eichelbaum M, Linder A, Toomes H, Dierkesmann R, Kroemer H K. Variability of cyclophosphamide uptake into human bronchial carcinoma: consequences for local bioactivation. Cancer Chemother Pharmacol (im Druck)
- 18 Bosslet K, Straub R, Blumrich M, Czech J, Gerken M, Sperker B, Kroemer H K, Gesson J P, Koch M, Monneret C. Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res. 1998; 58 1195-1201
1 Herrn PD Dr. med. H.-N. Macha zum 60. Geburtstag gewidmet
Dr A Linder
Abteilung Thoraxchirurgie Lungenklinik Hemer
Theo-Funccius-Str. 1 58765 Hemer
Email: E-mail: linder@lungenklinik-hemer.de