Zusammenfassung
Lipide und Lipoproteine sind Hauptrisikofaktoren für
das Entstehen und den Progress arteriosklerotischer kardiovaskulärer Erkrankungen.
Störungen im Lipoproteinstoffwechsel können u. a. zur Manifestation eines Diabetes
mellitus, zu einer akuten Pankreatitis und zum frühzeitigen Einsetzen arteriosklerotischer
Veränderungen führen. Epidemiologische Studien zeigten, dass Plasmakonzentrationen der
High-Density-Lipoproteine (HDL) jedoch invers mit dem Risiko einer koronaren Herzerkrankung
korreliert sind. Den HDL wird eine entscheidende Rolle im reversen Cholesterintransport
zugesprochen. Dabei wird überschüssiges freies Cholesterin des peripheren Gewebes im
Plasma in die HDL eingebaut, verestert und auf diesem Weg zur Leber zurücktransportiert, wo
eine Sekretion über die Galle stattfinden kann. Der Metabolismus der HDL ist bis heute nicht
im Detail geklärt. Zahlreiche Faktoren, welche diesen Metabolismus beeinflussen, wurden
bislang identifiziert. Insbesondere die Identifizierung des Cholesterinefflux-regulierenden
Proteins erbrachte neue Erkenntnisse bezüglich des HDL-Stoffwechsels. Eine detaillierte
Aufklärung des Stoffwechsels der HDL zur Entwicklung neuer Therapiestrategien ist zwingend
notwendig, ebenso zur Regulation der Serumkonzentrationen dieses so lebenswichtigen Lipoproteins.
In dieser Übersicht sollen hier die wesentlichen bislang bekannten Faktoren des
HDL-Metabolismus beschrieben werden.
HDL metabolism
Lipids and lipoproteins represent main risk factors for the
development and the progress of atherosclerotic and cardiovascular diseases. Disorders in
lipoprotein metabolism may result in diabetes mellitus, acute pancreatitis, and in the early
occurrence of atherosclerotic alterations. The plasma concentration of high density lipoproteins
(HDL) is inverse correlated with the risk of cardiovascular diseases as shown in epidemiologic
studies. HDL play an important role in the reverse cholesterol transport. Free cholesterol from
peripheral cells can be assembled in HDL particles, transformed to cholesterol esters, transported
to the liver, and secreted via the bile as bile acids. The metabolism of HDL is not known in
detail. Numerous factors were identified to influence the metabolism of HDL. Particularly the
identification of the cholesterol efflux regulating protein adduced new insights in HDL metabolism.
A detailed description of HDL metabolism is necessary for the evaluation of new therapeutic
strategies for the regulation of the serum concentration of this important lipoprotein. Here we
describe the known influencing factors for a better understanding of HDL metabolism.
Schlüsselwörter
HDL - Apolipoproteine - CERP - Cholesterinefflux
Key
words
HDL - Apolipoproteins - CERP - Cholesterol Efflux
Literatur
-
1
Gordon T, Castelli W P, Hjortland M C, Kannel W B, Dawber T R.
High density lipoprotein as a protective factor against coronary heart disease.
The Framingham Study.
Am J
Med.
1977;
62
707-714
-
2 Brewer H J, Sprecher D, Gregg R, Hoeg J. Risk factors for the development of premature cardiovascular disease. D.
Kritchevsky, W. Holmes, and R. Paoletti Drugs Affecting Lipid Metabolism
VIII New York; Plenum
Press 1985: 27-36
-
3 Assmann G, Schulte H. Ergebnisse und Folgerungen aus der Prospektiven Cardiovaskulären
Münster (PROCAM) Studie. G. Assmann Fettstoffwechselstörungen und
koronare Herzkrankheit München; MMw Medizin
Verlag 1988: 97-131
-
4
Chang M Y, Lees A M, Lees R S.
Low-density lipoprotein modification and arterial wall accumulation in a rabbit
model of
atherosclerosis.
Biochemistry.
1993;
32
8518-8524
-
5
Goldstein J L, Brown M S, Stone N J.
Genetics of the LDL receptor: Evidence that the mutations affecting binding and
internalization are
allelic.
Cell.
1977;
12
629-641
-
6 Goldstein J L, Hobbs H H, Brown M B. Familial Hypercholesterolemia. C. R. Scriver et al The
metabolic and molecular bases of inherited disease New York; McGraw
Hill 1995: 1981-2030
-
7
Gorden D, Rifkind B.
High density lipoprotein-the clinical implications of recent studies.
N
Engl J
Med.
1989;
321
1311-1316
-
8
Miller N.
Association of high-density lipoprotein subclasses and apolipoproteins with
ischemic heart disease and coronary atherosclerosis.
Am Heart
J.
1987;
113
589-597
-
9
Schaefer E, Zech L, Jenkins L. et al .
Human apolipoprotein A-I and A-II metabolism.
J Lipid
Res.
1982;
23
850-862
-
10
Brinton E, Eisenberg S, Breslow J.
Elevated high density lipoprotein cholesterol levels correlate with decreased
apolipoprotein A-I and A-II fractional catabolic rate in women.
J Clin
Invest.
1989;
84
262-269
-
11
Brinton E, Eisenberg S, Breslow J.
A low fat diet decreases high density lipoprotein cholesterol (HDL) levels by
decreasing HDL apolipoprotein transport rates.
J Clin
Invest.
1990;
85
144-151
-
12
Zech L, Schaefer E, Bronzert T, Aamont R, Brewer H j.
Metabolism of human apolipoprotein A-I and A-II: Compartmental
models.
J Lipid
Res.
1983;
24
60-71
-
13
Phillips M C, Johnson W J, Rothblat G H.
Mechanisms and consequences of cellular cholesterol exchange and
transfer.
Biochim Biophys
Acta.
1987;
906
223-276
-
14
Bruckdorfer K R, Crowe J, Sherry M K.
Evidence of water soluble intermedicate in exchange of cholesterol between
membranes.
Biochim Biophys
Acta.
1884;
778
489-496
-
15
Loeb J, Dawson G.
High density lipoprotein exchage reactions.
Mol Cell
Biochem.
1983;
52
161-176
-
16
Alaupovic P, Lee D, McConathy W J.
Studies on the composition and structure of plasma lipoproteins: Distribution of
lipoprotein families in major density classes of normal human plasma
lipoproteins.
Biochim Biophys
Acta.
1972;
260
689-707
-
17
Cheung M, Albers J.
Characterization of lipoprotein particles isolated by immunoaffinity
chromatography: Particles containing A-I and A-II and particles containing A-I but no
A-II.
J Biol
Chem.
1984;
259
12 201-12 209
-
18
Koren E, Puchois P, Alaupovic P. et al .
Quantification of two different types of apolipoprotein A-I containing
lipoprotein particles in plasma by enzyme-linked diffential-antibody immunosorbent
assay.
Clin
Chem.
1987;
36
38-43
-
19
Parra H, Mezdour H, Ghalim N, Bard J, Fruchart J.
Differential electroimmunoassay of human LpA-I lipoprotein particles on ready-to
use plates.
Clin
Chem.
1990;
36
1431-1435
-
20
Rader D, Castro G, Zech L, Fruchart J C, Brewer HB
jr.
In vivo metabolism of apolipoprotein A-I on high density lipoprotein particles
LpA-I and LpA-I, A-II.
J Lipid
Res.
1991;
32
1849-1859
-
21
Puchois P, Kandoussi A, Fievet P. et al .
Apolipoprotein A-I containing lipoproteins in coronary artery
disease.
Atherosclerosis.
1987;
68
35-40
-
22
Stampfer M, Sacks F, Salvini S, Willett W, Hennekens C.
A prospective study of cholesterol, apolipoproteins, and the risk of myocardial
infarction.
N Engl J
Med.
1991;
325
373-381
-
23
Barbaras R, Puchois P, Fruchart J -C, Ailhaud G.
Cholesterol efflux from cultured adipose cells is mediated by LpAI particles but
not by LpAI:AII particles.
Biochem Biophys Res
Com.
1987;
142
63-69
-
24
Schultz J, Verstuyft J, Gong E, Nichols A, Rubin E.
Protein compostion determines the anti-atherigenic properties of HDL in
transgenic
mice.
Nature.
1993;
365
762-764
-
25
Mehrabian M, Qiao J, Hyman R. et al .
Influence of the apoA-II gene locus on HDL levels and fatty streak development in
mice.
Arterioscler
Thromb.
1993;
13
1-10
-
26
Warden C, Hedrick C, Qiao J, Castllani L, Lusis A.
Atherosclerosis in transgenic mice overexpressing apolipoprotein
A-II.
Science.
1993;
261
469-472
-
27
Cheung M C, Wolf A C, Lum K D, Tollefson J H, Albers J J.
Distribution and localization of lecithin:cholesterol acyltransferase and
cholesteryl ester transfer activity in A-I-containing lipoproteins.
J Lipid
Res.
1986;
27
1135-1144
-
28
Barkia A, Barbaras R, Ghalim N. et al .
Effect of different Apo A-I containing lipoprotein particles on reverse
cholesterol transport in fat cells.
Horm Metab Res
Suppl.
1988;
19
10-12
-
29
Glomset J A.
The plasma lecithin:cholesterol acyltransferase.
J Lipid
Res.
1968;
9
155-167
-
30
Barter P J, Hopkins G J, Gorjatschko L.
Lipoprotein substrates for plasma cholesterol esterification. Influence of
particle size and composition of the high density lipoprotein subfraction
3.
Atherosclerosis.
1985;
58
97-107
-
31
Jonas A.
Lecithin-cholesterol acyltransferase in the metabolism of high-density
lipoproteins.
Biochim Biophys
Acta.
1991;
1084
205-220
-
32
Barter P J, Hopkins G J, Calvert G D.
Transfers and exchanges of esterified cholesterol between plasma
lipoproteins.
Biochem
J.
1982;
208
1-7
-
33
Hesler C B, Swenson T L, Tall A R.
Purification and characterization of a human plasma cholesteryl ester transfer
protein.
J Biol
Chem.
1987;
262
2275-2282
-
34
Francone O L, Gurakar A, Fielding C.
Distribution and functions of lecithin:cholesterol acyltransferase and
cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit
containing these activities together with apolipoproteins A-I and D that catalyzes the
esterification and transfer of cell-derived cholesterol.
J Biol
Chem.
1989;
264
7066-1072
-
35
Tollefson J H, Ravnik S, Albers J J.
Isolation and characterization of a phospholipid transfer protein (LTP-II) from
human plasma.
J Lipid
Res.
1988;
29
1593-1602
-
36
Nishida H I, Nishida T.
Phospholipid transfer protein mediates transfer of not only phosphatidylcholine
but also cholesterol from phosphatidylcholine-cholesterol vesicles to high density
lipoproteins.
J Biol
Chem.
1997;
272
6959-6964
-
37
van
Vieira-Bruggen D, Kalkman I, van
Gent T, van Tol A, Jansen H.
Induction of adrenal scavenger receptor BI and increased high density
lipoprotein-cholesteryl ether uptake by in vivo inhibition of hepatic lipase.
J Biol
Chem.
1998;
273
32 038-32 041
-
38
Wang N, Weng W, Breslow J L, Tall A R.
Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein
A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo
evidence that SR-BI is a functional high density lipoprotein receptor under feedback
control.
J Biol
Chem.
1996;
271
21 001-21 004
-
39
Deckelbaum R J, Ramakrishnan R, Eisenberg S, Olivecrona T, Bengtsson-Olivecrona G.
Triacylglycerol and phospholipid hydrolysis in human plasma lipoproteins: Role of
lipoprotein and hepatic
lipase.
Biochemistry.
1992;
31
8544-8551
-
40
Shirai K, Barnhart R L, Jackson R L.
Hydrolysis of human plasma high density lipoprotein 2-phospholipids and
triglycerides by hepatic lipase.
Biochem Biophys Res
Com.
1981;
100
591-599
-
41
Musliner T A, Herbert P N, Kingston M J.
Lipoprotein substrates of lipoprotein lipase and hepatic triacylglycerol lipase
from human post-heparin plasma.
Biochim Biophys
Acta.
1979;
575
277-288
-
42
Hime N J, Barter P J, Rye K A.
The influence of apolipoproteins on the hepatic lipase-mediated hydrolysis of
high density lipoprotein phospholipid and triacylglycerol.
J Biol
Chem.
1998;
273
27 191-27 198
-
43
Hosoai H, Webb N R, Glick J M. et al .
Expression of serum amyloid A protein in the absence of the acute phase response
does not reduce HDL cholesterol or apoA-I levels in human apoA-I transgenic mice.
J Lipid
Res.
1999;
40
648-653
-
44
Tietge U J, Maugeais C, Cain W. et al .
Overexpression of secretory phospholipase A(2) causes rapid catabolism and
altered tissue uptake of high density lipoprotein cholesteryl ester and apolipoprotein
A-I.
J Biol
Chem.
2000;
275
10 077-10 084
-
45
Barter P J, Rye K -A.
Molecular mechanisms of reverse cholesterol transport.
Curr Opin
Lipidol.
1996;
7
82-87
-
46
Fielding C J, Fielding P E.
Molecular physiology of reverse cholesterol transport.
J Lipid
Res.
1995;
36
211-228
-
47
Rothblat G H, Mahlberg F H, Johnson W J, Phillips M C.
Apolipoproteins, membrane cholesterol domains, and the regulation of cholesterol
efflux.
J Lipid
Res.
1992;
33
1091-1097
-
48
Schmidt H H-J, Manns M P.
Reverse cholesterol
transport.
Z Gastroenterol.
1996;
34
386-391
-
49
Acton S, Rigotti A, Landschulz K T. et al .
Identification of scavenger receptor SR-BI as a high density lipoprotein receptor
(see
comments).
Science.
1996;
271
518-520
-
50
Fidge N H.
High density lipoprotein receptors, binding proteins, and ligands.
J
Lipid
Res.
1999;
40
187-201
-
51
Graham D L, Oram J F.
Identification and characterization of a high density lipoprotein-binding protein
in cell membranes by ligand blotting.
J Biol
Chem.
1987;
262
7439-7442
-
52
McKnight G L, Reasoner J, Gilbert T. et al .
Cloning and expression of a cellular high density lipoprotein-binding protein
that is up-regulated by cholesterol loading of cells.
J Biol
Chem.
1992;
267
12 131-12 141
-
53
Dodson R E, Shapiro D J.
Vigilin, a ubiquitous protein with 14 K homology domains, is the
estrogen-inducible vitellogenin mRNA 3’-untranslated region-binding protein.
J Biol
Chem.
1997;
272
12 249-12 252
-
54
Kanamori H, Dodson R E, Shapiro D J.
In vitro genetic analysis of the RNA binding site of vigilin, a multi-KH-domain
protein.
Mol Cell
Biol.
1998;
18
3991-4003
-
55
Kozarsky K F, Donahee M H, Rigotti A. et al .
Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol
levels.
Nature.
1997;
387
414-417
-
56
Ueda Y, Royer L, Gong E. et al .
Lower plasma levels and accelerated clearance of high density lipoprotein (HDL)
and non-HDL cholesterol in scavenger receptor class B type I transgenic mice.
J Biol
Chem.
1999;
274
7165-7171
-
57
Rigotti A, Trigatti B L, Penman M. et al .
A targeted mutation in the murine gene encoding the high density lipoprotein
(HDL) receptor scavenger receptor class B type I reveals its key role in HDL
metabolism.
Proc Natl Acad Sci
USA.
1997;
94
12 610-12 615
-
58
Trigatti B, Rigotti A, Krieger M.
The role of the high-density lipoprotein receptor SR-BI in cholesterol
metabolism.
Curr Opin
Lipidol.
2000;
11
123-131
-
59
Rodrigueza W V, Thuahnai S T, Temel R E. et al .
Mechanism of scavenger receptor class B type I-mediated selective uptake of
cholesteryl esters from high density lipoprotein to adrenal cells.
J Biol
Chem.
1999;
274
20 344-20 350
-
60
Moestrup S K, Kozyraki R.
Cubilin, a high-density lipoprotein receptor.
Curr Opin
Lipidol.
2000;
11
133-140
-
61
Seetharam B, Bose S, Li N.
Cellular import of cobalamin (Vitamin B-12).
J
Nutr.
1999;
129
1761-1764
-
62
Christensen E I, Birn H, Verroust P, Moestrup S K.
Megalinmediated endocytosis in renal proximal tubule.
Ren
Fail.
1998;
20
191-199
-
63
Gliemann J.
Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple
functions of the large family members via interaction with complex ligands.
Biol
Chem.
1998;
379
951-964
-
64
Rust S, Walter M, Funke H. et al .
Assignment of Tangier disease to chromosome 9q31 by a graphical linkage exclusion
strategy (published erratum appears in Nat Genet 1998; 20: 312).
Nat
Genet.
1998;
20
96-98
-
65
Hayden M R, Clee S M, Brooks-Wilson A. et al .
Cholesterol efflux regulatory protein, Tangier disease and familial high-density
lipoprotein deficiency.
Curr Opin
Lipidol.
2000;
11
117-122
-
66
Rust S, Rosier M, Funke H. et al .
Tangier disease is caused by mutations in the gene encoding ATP-binding cassette
transporter 1(see comments).
Nat
Genet.
1999;
22
352-355
-
67
Dean M, Allikmets R.
Evolution of ATP-binding cassette transporter genes.
Curr Opin Genet
Dev.
1995;
5
779-785
-
68
Oram J F, Vaughan A M.
ABCA1-mediated transport of cellular cholesterol and phospholipids to HDL
apolipoproteins.
Curr Opin
Lipidol.
2000;
11
253-260
-
69
Young S G, Fielding C J.
The ABCs of cholesterol efflux (news; comment).
Nat
Genet.
1999;
22
316-318
-
70
Assmann G, Schulte H, von
Eckardstein A, Huang Y.
High-density lipoprotein cholesterol as a predictor of coronary heart disease
risk. The PROCAM experience and pathophysiological implications for reverse cholesterol
transport.
Atherosclerosis.
1996;
124
(Suppl.)
S11-20
-
71
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol
in Adults .
Summary of the second report of the National Cholesterol Education Program (NCEP)
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult
Treatment Panel
II).
JAMA.
1993;
269
3015-3023
-
72
Wood P D, Stefanick M L, Dreon D M. et al .
Changes in plasma lipids and lipoproteins in overweight men during weight loss
through dieting as compared with exercise.
N Engl J
Med.
1988;
319
1173-1179
-
73
Grundy S M, Denke M A.
Dietary influences on serum lipids and lipoproteins.
J Lipid
Res.
1990;
31
1149-1172
-
74
Stampfer M J, Colditz G A, Willett W C, Speizer F E, Hennekens C H.
A prospective study of moderate alcohol consumption and the risk of coronary
disease and stroke in women.
N Engl J
Med.
1988;
319
267-273
-
75
Stubbe I, Eskilsson J, Nilsson-Ehle P.
High-density lipoprotein concentrations increase after stopping
smoking.
BMJ (Clin Res
Ed.).
1982;
284
1511-1513
-
76
Schmidt H H-J, Remaley A T, Stonik J A. et al .
Carboxyl-terminal Domain Truncation Alters Apolipoprotein A-I in Vivo
Catabolism.
J Biol
Chem.
1995;
270
5469-5475
-
77
Genschel J, Haas R, Proepsting M J, Schmidt H H.
Apolipoprotein A-I induced amyloidosis.
FEBS
Lett.
1998;
430
145-149
Anschrift für die Verfasser
PD Dr. med Hartmut Schmidt
Medizinische Klinik mit Schwerpunkt
Gastroenterologie, Hepatologie und
Endokrinologie
Campus Charité Mitte
Schumannstraße 20/21
10117 Berlin
Fax: 0 30/28028141
Email: janine.genschel@charite.de