RSS-Feed abonnieren
DOI: 10.1055/s-2001-15204
Stromules: Mobile Protrusions and Interconnections Between Plastids
Publikationsverlauf
February 16, 2001
May 7, 2001
Publikationsdatum:
31. Dezember 2001 (online)

Abstract
Stroma-filled tubules, recently named stromules, extend from the surface of plastids in most cell types and plant species examined. Stromules are highly dynamic structures, continuously and rapidly changing shape. They have been shown to interconnect plastids and permit the exchange of green fluorescent protein (GFP) between plastids. Stromules are enclosed by the inner and outer plastid envelope membranes and are 0.4 - 0.8 μm in diameter and up to 65 μm long. Movement of stromules is dependent on the actin cytoskeleton and the ATPase activity of myosin. Stromules are more abundant in cells containing a relatively small plastid volume and provide a means of enormously increasing the plastid surface area. Many important questions on the structure, function and mobility of stromules remain unanswered.
Abbreviations
CaMV: cauliflower mosaic virus
DiOC6: 3, 3′-dihexyloxacarbocyanine
FCCP: carbonyl cyanide p-trifluoromethoxy-phenylhydrazone
GFP: green fluorescent protein
RbcS: small subunit of Rubisco
Rubisco: ribulose 1,5-bisphosphate carboxylase/oxygenase
Key words
Amyloplast - chloroplast - GFP - leucoplast - plastid - stromule
References
- 01 Arimura, S.-I.,, Hirai, A.,, and Tsutsumi, N.. (2001); Numerous and highly developed tubular projections from plastids observed in tobacco epidermal cells. Plant Science. 169 449-454
- 02 Baldev, A.,, Gaikwad, K.,, Kirti, P. D., Mohapatra, T.,, Prakash, S.,, and Chopra, V. L.. (1998); Recombination between chloroplast genomes of Trachystoma ballii and Brassica juncea following protoplast fusion. Molecular and General Genetics. 260 357-361
- 03 Bourett, T. M.,, Czymmek, K. J.,, and Howard, R. J.. (1999); Ultrastructure of chloroplast protuberances in rice leaves preserved by high-pressure freezing. Planta. 208 472-479
- 04 Buttrose, M. S.. (1960); Submicroscopic development and structure of starch granules in cereal endosperms. Journal of Ultrastructure Research. 4 231-257
- 05 Buttrose, M. S.. (1963); Ultrastructure of the developing wheat endosperm. Australian Journal of Biological Science. 16 305-317
- 06 Charon, J.,, Launay, J.,, and Carde, J.-P.. (1987); Spatial organization and volume density of leucoplasts in pine secretory cells. Protoplasma. 138 45-53
- 07 Cline, K.,, Andrews, J.,, Mersey, B.,, Newcomb, E. H.,, and Keegstra, K.. (1981); Separation and characterisation of inner and outer envelope membranes of pea chloroplasts. Proceedings of the National Academy of Sciences of the USA. 78 3595-3599
- 08 Daniell, H.. (1999); New tools for chloroplast genetic engineering. Nature Biotechnology. 17 855-856
- 09 Dong, X.-J.,, Ryu, J.-H.,, Takagi, S.,, and Nagai, R.. (1996); Dynamic changes in the organization of microfilaments associated with the photocontrolled motility of chloroplasts in epidermal cells of Vallisneria. . Protoplasma. 195 18-24
- 10 Esau, K.. (1944); Anatomical and cytological studies on beet mosaic. Journal of Agricultural Research. 69 95-117
- 11 Esau, K.. (1953) Plant Anatomy. New York; Wiley
- 12 Esau, K.. (1965) Plant Anatomy, 2nd ed. New York; Wiley
- 13 Evert, R. F., and Deshpande, B. P.. (1970); An ultrastructural study of cell division in the cambium. American Journal of Botany. 57 942-961
- 14 Fejes, E.,, Engler, D.,, and Maliga, P.. (1990); Extensive homologous chloroplast DNA recombination in the pt14 Nicotiana somatic hybrid. Theoretical and Applied Genetics. 79 28-32
- 15 Gray, J. C.,, Hibberd, J. M.,, Linley, P. J.,, and Uijtewaal, B.. (1999); GFP movement between chloroplasts. Nature Biotechnology. 17 1146
- 16 Guilliermond, A.. (1934) Les Constituants Morphologiques du Cytoplasme: Le Chondriome. Paris; Hermann pp. 128
- 17 Haberlandt, G.. (1888); Die Chlorophyllkörper der Selaginellen. Flora. 71 291-308
- 18 Hanson, M. R., and Köhler, R.. (2001); GFP imaging: methodology and application to investigate cellular compartmentation of metabolism in plants. Journal of Experimental Botany. 52 529-539
- 19 Heitz, E.. (1937); Untersuchungen über den Bau der Plastiden. I. Die gerichteten Chlorophyllscheiben der Chloroplasten. Planta. 26 134-163
- 20 Hibberd, J. M.,, Linley, P. J.,, Khan, M. S.,, and Gray, J. C.. (1998); Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment. Plant Journal. 16 627-632
- 21 Hongladarom, T.,, Honda, S.,, and Wildman, S. G.. (1964) Organelles in living plant cells. Videotape available from University of California Extension Center for Media and Independent Learning. 2000 Center St., Berkeley, CA 94704, USA
- 22 Kandasamy, M. K., and Meagher, R. B.. (1999); Actin-organelle interaction: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motility and the Cytoskeleton. 44 110-118
- 23 Khan, M. S., and Maliga, P.. (1999); Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nature Biotechnology. 17 910-915
- 24 Knight, J. S., and Gray, J. C.. (1995); The N-terminal hydrophobic region of the mature phosphate translocator is sufficient for targeting to the chloroplast inner envelope membrane. Plant Cell. 7 1421-1432
- 25 Knoblauch, M.,, Hibberd, J. M.,, Gray, J. C.,, and van Bel, A. J. E.. (1999); A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nature Biotechnology. 17 906-909
- 26 Köhler, R. H.. (1998); GFP for in vivo imaging of subcellular structures in plant cells. Trends in Plant Sciences. 3 317-320
- 27 Köhler, R., and Hanson, M. R.. (2000); Plastid tubules of higher plants are tissue-specific and developmentally regulated. Journal of Cell Science. 113 81-89
- 28 Köhler, R.,, Cao, J.,, Zipfel, W. R.,, Webb, W. W.,, and Hanson, M. R.. (1997 a); Exchange of protein molecules between higher plant plastids. Science. 276 2039-2042
- 29 Köhler, R.,, Hanson, M.,, and Wildman, S.. (1997 b); Plastid interconnections imaged by fluorescence and phase contrast. Trends in Cell Biology. 7 392
- 30 Köhler, R.,, Zipfel, W. R.,, Webb, W. W.,, and Hanson, M. R.. (1997 c); The green fluorescent protein as a marker to visualize plant mitochondria in vivo. . Plant Journal. 11 613-621
- 31 Köhler, R.,, Schwille, P.,, Webb, W. W.,, and Hanson, M. R.. (2000); Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy. Journal of Cell Science. 113 3921-3930
- 32 Koop, H.-U., and Kiermayer, O.. (1980); Protoplasmic streaming in the giant unicellular alga Acetabularia mediterranea. II. Differential sensitivity of movement systems to substances acting on microfilaments and microtubuli. Protoplasma. 102 295-306
- 33 Kuroiwa, T.. (1991); The replication, differentiatation, and inheritance of plastids with emphasis on the concept of organelle nuclei. International Review of Cytology. 128 1-61
- 34 Langeveld, S. M. J.,, van Wijk, R.,, Stuurman, N.,, Kijne, J. W.,, and de Pater, S.. (2000); B-type granule containing protrusions and interconnections between amyloplasts in developing wheat endosperm revealed by transmission electron microscopy and GFP expression. Journal of Experimental Botany. 51 1357-1361
- 35 Li, H.-M.,, Moore, T.,, and Keegstra, K.. (1991); Targeting of proteins to the outer envelope membrane uses a different pathway than transport into chloroplasts. Plant Cell. 3 709-717
- 36 Medgyesy, P.,, Fejes, E.,, and Maliga, P.. (1985); Interspecific chloroplast recombination in a Nicotiana somatic hybrid. Proceedings of the National Academy of Sciences of the USA. 82 6960-6964
- 37 Menzel, D.. (1994); An interconnected plastidom in Acetabularia: implications for the mechanism of chloroplast motility. Protoplasma. 179 166-171
- 38 Menzel, D., and Schliwa, M.. (1986); Motility in the siphonous green alga Bryopsis. II. Chloroplast movement requires oraganized arrays of both microtubules and actin filaments. European Journal of Cell Biology. 40 286-293
- 39 Millen, R. S.,, Olmstead, R. G.,, Adams, K. L.,, Palmer, J. D.,, Lao, N. T.,, Heggie, L.,, Kavanagh, T. A.,, Hibberd, J. M.,, Gray, J. C.,, Morden, C. W.,, Calie, P. J.,, Jermiin, L. S.,, and Wolfe, K. H.. (2001); Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell. 13 645-658
- 40 Newcomb, E. H.. (1967); Fine structure of protein-storing plastids in bean root tips. Journal of Cell Biology. 33 143-163
-
41 Nichols, B. W.,, Stubbs, J. M.,, and James, A. T.. (1967)
The lipid composition and ultrastructure of normal developing and degenerating chloroplasts. Biochemistry of Chloroplasts, Vol. 2. Goodwin, T. W., ed. London; Academic Press pp. 677-690 - 42 Nishibayashi, S., and Kuroiwa, T.. (1982); Behaviour of leucoplast nucleoids in the epidermal cell of onion (Allium cepa) bulb. Protoplasma. 110 177-184
- 43 Öpik, H.. (1966); Change in cell fine structure in the cotyledons of Phaseolus vulgaris L. during germination. Journal of Experimental Botany. 17 427-439
- 44 Öpik, H.. (1968); Development of cotyledon cell structure in ripening Phaseolus vulgaris seeds. Journal of Experimental Botany. 19 64-76
- 45 Parker, M. L.. (1985); The relationship between A-type and B-type starch granules in the developing endosperm of wheat. Journal of Cereal Science. 3 271-278
- 46 Pyke, K.,, Rutherford, S. M.,, Robertson, E. J.,, and Leech, R. M.. (1994); arc6, a fertile Arabidopsis mutant with only two mesophyll cell chloroplasts. Plant Physiology. 106 1169-1177
- 47 Schimper, A. F. W.. (1885); Untersuchungen über die Chlorophyllkörper und die ihnen homologen Gebilde. Pringsheim's Jahrbücher für wissenschaftliche Botanik. 16 1-247
- 48 Scott, S. V., and Theg, S. M.. (1996); A new chloroplast protein import intermediate reveals distinct translocation machineries in the two envelope membranes: energetics and mechanistic implications. Journal of Cell Biology. 132 63-75
- 49 Senn, G.. (1908) Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren. Leipzig; Wilhelm Engelmann Verlag
- 50 Shalla, T. A.. (1964); Assembly and aggregation of tobacco mosaic virus in tomato leaves. Journal of Cell Biology. 21 253-264
- 51 Shiina, T.,, Hayashi, K.,, Ishii, N.,, Morikawa, K.,, and Toyoshima, Y.. (2000); Chloroplast tubules visualized in transplastomic plants expressing green fluorescent protein. Plant and Cell Physiology. 41 367-371
- 52 Sjolund, R. D., and Weier, T. E.. (1971); An ultrastructural study of chloroplast structure and dedifferentiation is tissue culture of Streptanthus tortuosus (Cruciferae). American Journal of Botany. 58 172-181
- 53 Spencer, D., and Unt, H.. (1964); Biochemical and structural correlations in isolated spinach chloroplasts under isotonic and hypotonic conditions. Australian Journal of Biological Science. 18 197-210
- 54 Spencer, D., and Wildman, S. G.. (1962); Observations on the structure of grana-containing chloroplasts and a proposed model of chloroplast structure. Australian Journal of Biological Science. 15 599-610
- 55 Steffen, K.. (1964); Chromoplastenstudien. I. Der amöboide Chromoplastentyp. Planta. 60 506-522
- 56 Than, N. D., and Medgyesy, P.. (1989); Limited chloroplast gene transfer via recombination overcomes plastome-genome incompatibility between Nicotiana tabacum and Solanum tuberosum. . Plant Molecular Biology. 12 87-93
-
57 Thomson, W. W.. (1974)
Ultrastructure of mature chloroplasts. Dynamic Aspects of Plant Ultrastructure. Robards, A. W., ed. Maidenhead; McGraw-Hill pp. 136-177 - 58 Tirlapur, U. K.,, Dahse, I.,, Reiss, B.,, Meurer, J.,, and Oelmüller, R.. (1999); Characterization of the activity of a plastid-targeted green fluorescent protein in Arabidopsis. . European Journal of Cell Biology. 78 233-240
- 59 Tobin, E. M.. (1997); Renewing an old view of chloroplasts. Trends in Plant Sciences. 2 405-406
- 60 Tulett, A. J.,, Bagshaw, V.,, and Yeoman, M. M.. (1969); Arrangement and structure of plastids in dormant and cultured tissue from artichoke tubers. Annals of Botany. 33 217-226
- 61 Vesk, M.,, Mercer, F. V.,, and Possingham, J. V.. (1965); Observations on the origin of chloroplasts and mitochondria in the leaf cells of higher plants. Australian Journal of Botany. 13 161-169
- 62 von Wettstein, D.. (1957); Chlorophyll-Letale und der Submikroskopische Formwechsel der Plastiden. Experimental Cell Research. 12 427-506
- 63 Weier, T. E., and Thomson, W. W.. (1962); Membranes of mesophyll cells of Nicotiana rustica and Phaseolus vulgaris with particular reference to the chloroplast. American Journal of Botany. 49 807-820
- 64 Whatley, J. M.. (1974); Chloroplast development in primary leaves of Phaseolus vulgaris. . New Phytologist. 73 1097-1110
- 65 Wildman, S. G.,, Hongladarom, T.,, and Honda, S. I.. (1962); Chloroplasts and mitochondria in living plant cells: cinephotomicrographic studies. Science. 138 434-436
-
66 Wildman, S. G.. (1967)
The organization of grana-containing chloroplasts in relation to location of some enzymatic systems concerned with photosynthesis, protein synthesis, and ribonucleic acid synthesis. Biochemistry of Chloroplasts, Vol. 2. Goodwin, T. W., ed. London; Academic Press pp. 295-317 - 67 Witztum, A., and Parthasarathy, M. V.. (1985); Role of actin in chloroplast clustering and banding in leaves of Egeria, Elodea and Hydrilla. . European Journal of Cell Biology. 39 21-26
- 68 Yasuo, N.,, Hirano, T.,, Yoshimoto, K.,, Shimizu, M.,, and Kobayashi, H.. (1999); Non-invasive quantitative detection and application of non-toxic, S65T-type green fluorescent protein in living plants. Plant Journal. 18 455-463
J. C. Gray
Department of Plant Sciences
University of Cambridge
Downing Street
Cambridge CB2 3EA
United Kingdom
eMail: jcg2@mole.bio.cam.ac.uk
Section Editor: A. M. C. Emons