Plant Biol (Stuttg) 2001; 3(4): 299-310
DOI: 10.1055/s-2001-16454
Review Article
Georg Thieme Verlag Stuttgart ·New York

Stable Isotopes at Natural Abundance in Terrestrial Plant Ecology and Ecophysiology: An Update

M. A. Adams 1,2 , P. F. Grierson 2
  • 1 Botany Department, The University of Western Australia, Nedlands WA 6907, Australia
  • 2 Forest Science Centre, Water St, Creswick, Australia
Further Information

Publication History

February 5, 2001

May 14, 2001

Publication Date:
16 August 2001 (online)

Introduction

Of all the techniques used in modern plant ecology, those that apply stable isotopes are amongst the most powerful. Previously the preserve of geochemists and physiologists owing to its cost and the limited distribution of knowledge, stable isotope technology is now widely used in plant, animal and microbial ecology and has been substantially reduced in real cost in the past decade. As a subset, techniques that use the naturally occurring variation in abundance of stable isotopes are highly cost-effective and, once ecologists have some basic rules for guidance, highly informative. The general increase in availability of technology has spawned an explosion in publication of studies of natural abundance of stable isotopes in ecology.

In the last decade there has been a number of authoritative books by Ehleringer et al. (1993[38]), Lajtha and Michener (1994[87]), Griffiths (1998[62]) and Rundel et al. (1989[125]) on the application of stable isotopes across a range of fields. In the narrower field of plant ecology, Högberg (1997[75]), Handley and Scrimgeour (1997[65]), Handley et al. (1998[66]) and Yoneyama (1995[160]) have all provided recent reviews. No doubt there are other texts and reviews coming to publication at much the same time as this update and we will not attempt to re-review much of what has been published prior to 1996. Instead we have tried to provide a synthesis of a few areas of research where the application of stable isotopes is (seemingly) providing us with new insights into plant ecophysiology and autecology, as well as community or ecosystem ecology. We begin with a brief overview of some of the more recent technical developments, and then move to a series of isotope-based analyses before finishing with some suggestions for future research.

References

  • 01 Alewell,  C.,, Mitchell,  M. J.,, Likens,  G. E.,, and Kruse,  H. R.. (1999);  Sources of stream sulfate at the Hubbard Brook Experimental Forest: Long-term analyses using stable isotopes.  Biogeochemistry. 44 281-299
  • 02 Alstad,  K. P.,, Welker,  J. M.,, Williams,  S. A.,, and Trlica,  M. J.. (1999);  Carbon and water relations of Salix monticola in response to winter browsing and changes in surface water hydrology: an isotopic study using δ13C and δ18O.  Oecologia. 120 375-385
  • 03 Austin,  A., and Sala,  O. E.. (1999);  Foliar δ15N is negatively correlated with rainfall along the IGBP transect in Australia.  Australian Journal of Plant Physiology. 26 293-295
  • 04 Austin,  A. T., and Vitousek,  P. M.. (1998);  Nutrient dynamics on a precipiation gradient in Hawaii.  Oecologia. 113 519-529
  • 05 Barbour,  M. M., and Farquhar,  G. D.. (2000);  Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves.  Plant, Cell and Environment. 23 473-485
  • 06 Barbour,  M. M.,, Schurr,  U.,, Henry,  B. K.,, Wong,  S. C.,, and Farquhar,  G. D.. (2000);  Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean: evidence in support of the Péclet effect.  Plant Physiology. 123 671-679
  • 07 Begley,  I. S., and Scrimgeour,  C. M.. (1997);  High-precision δ2H and δ18O measurement for water and volatile organic compounds by continuous-flow pyrolysis isotope ratio mass spectrometry.  Analytical Chemistry. 69 1530-1535
  • 08 Bingham,  I. J.,, Glass,  A. D. M.,, Kronzucker,  H. J.,, Robinson,  D.,, and Scrimgeour,  C. M.. (2000) Isotope techniques. Root Methods. A Handbook. Smit, A. M., et al., eds. Berlin; Springer-Verlag pp. 175-210
  • 09 Binkley,  D., and Resh,  S.. (1999);  Rapid changes in soils following Eucalyptus afforestation in Hawaii.  Soil Science Society of America Journal. 63 222-225
  • 10 Bleby,  T. M.,, Aucote,  M.,, Kennettsmith,  A. K.,, Walker,  G. R.,, and Schachtman,  D. P.. (1997);  Seasonal water use characteristics of tall wheatgrass (Agropyron elongatum [Host] Beauv.) in a saline environment.  Plant, Cell and Environment. 20 1361-1371
  • 11 Bonal,  D.,, Barigah,  T. S.,, Granier,  A.,, and Guehl,  J. M.. (2000 a);  Late stage canopy tree species with extremely low δ13C and high stomatal sensitivity to seasonal soil drought in the tropical rainforest of French Guiana.  Plant, Cell and Environment. 23 445-459
  • 12 Bonal,  D.,, Atger,  C.,, Barigah,  T. S.,, Ferhi,  A.,, Guehl,  J. M.,, and Ferry,  B.. (2000 b);  Water acquisition patterns of two wet tropical canopy tree species of French Guiana as inferred from H2 18O extraction profiles.  Annals of Forest Science. 57 717-724
  • 13 Borella,  S.,, Leuenberger,  M.,, Saurer,  M.,, and Siegwolf,  R.. (1998);  Reducing uncertainties in δ13C analysis of tree rings: Pooling, milling and cellulose extraction.  Journal of Geophysical Research. 103 19519-19526
  • 14 Boutton,  T. W.,, Archer,  S. R.,, and Midwood,  A. J.. (1999);  Stable isotopes in ecosystem science: structure, function and dynamics of a subtropical savanna.  Rapid Communications in Mass Spectrometry. 13 1263-1277
  • 15 Brugnoli,  E.,, Scartazza,  A.,, Lauteri,  M.,, Monteverdi,  M. C.,, and Maguas,  C.. (1998) Carbon isotope discrimination in structural and non-structural carbohydrates in relation to productivity and adaptation to unfavourable conditions. Stable Isotopes and the Integration of Biological, Ecological and Geochemical Processes. Griffiths, H., ed. Oxford; BIOS pp. 133-146
  • 16 Buchmann,  N.,, Guehl,  J. M.,, Barigah,  T. S.,, and Ehleringer,  J. R.. (1997);  Interseasonal comparison of CO2 concentrations, isotopic composition and carbon dynamics in an Amazonian rainforest (French Guiana).  Oecologia. 110 120-131
  • 17 Burgess,  S. S. O.,, Adams,  M. A.,, Turner,  N. C.,, and Ong,  C. K.. (1998);  The redistribution of soil water by tree root systems.  Oecologia. 115 306-311
  • 18 Burgess,  S. O.,, Adams,  M. A.,, Turner,  N. C.,, and Ong,  C. K.. (2000);  Characterisation of the hydrogen isotope profile in an agroforestry system: implications for tracing water sources of trees.  Agricultural Water Management. 45 229-241
  • 19 Caldwell,  M. M.,, Dawson,  T. E.,, and Richards,  J. H.. (1998);  Hydraulic lift - consequences of water efflux from the roots of plants.  Oecologia. 113 151-161
  • 20 Cerling,  T. E., and Harris,  J. M.. (1999);  Carbon isotope fractionation between diet and bioapatite in ungulate animals and implications for ecological and paleoecological studies.  Oecologia. 120 347-363
  • 21 Chang,  S. X., and Handley,  L. L.. (2000);  Abundances (δ15N) in forests of northern Vancouver Island, British Columbia.  Functional Ecology. 14 273-280
  • 22 Cordell,  S.,, Goldstein,  G.,, Meinzer,  F. C.,, and Handley,  L. L.. (1999);  Allocation of carbon and nitrogen in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient.  Functional Ecology. 13 811-818
  • 23 Craig,  H.. (1961);  Isotopic variations in meteoric water.  Science. 133 1702-1703
  • 24 Craig,  H., and Gordon,  L. I.. (1965) Deuterium and oxygen-18 variations in the ocean and marine atmosphere. Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperatures. Tongiorgi, E., ed. Spoleto, Italy pp. 9-130
  • 25 Currie,  L. A.,, Klouda,  G. A.,, Benner,  B. A.,, Garrity,  K.,, and Eglinton,  T. I.. (1999);  Isotopic and molecular fractionation in combustion; three routes to molecular marker validation, including direct molecular “dating” (GC/AMS).  Atmospheric Environment. 33 2789-2806
  • 26 Damesin,  C.,, Rambal,  S.,, and Joffre,  R.. (1998);  Seasonal and annual changes in leaf δ13C in two co-occurring Mediterranean oaks: relations to leaf growth and drought progression.  Functional Ecology. 12 778-785
  • 27 Damesin,  C.,, Rambal,  S.,, and Joffre,  R.. (1997);  Between tree variations in leaf δ13C of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability.  Oecologia. 111 26-35
  • 28 Dawson,  T. E.. (1996);  Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift.  Tree Physiology. 16 263-272
  • 29 Dawson,  T. E., and Ehleringer,  J. R.. (1991);  Streamside trees that do not use stream water.  Nature. 350 335-337
  • 30 Dawson,  T. E., and Pate,  J. S.. (1996);  Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: A stable isotope investigation.  Oecologia. 107 13-20
  • 31 Dawson,  T. E.,, Pausch,  R. C.,, and Parker,  H. M.. (1998) The role of hydrogen and oxygen stable isotopes in understanding water movement along the soil-plant-atmosphere continuum. Stable isotopes: integration of biological, ecological and geochemical processes. Griffiths, H., ed. Oxford; BIOS Scientific Publishers pp. 169-183
  • 32 DeNiro,  M. J., and Epstein,  S.. (1979);  Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide and water.  Science. 204 51-53
  • 33 Dongmann,  G.,, Förstel,  H.,, and Wagner,  K.. (1972);  18O-rich oxygen from lant plants.  Nature. 240 127-128
  • 34 Dongmann,  G.,, Nürnberg,  H. W.,, Förstel,  H.,, and Wagner,  K.. (1974);  On the enrichment of H2 18O in the leaves of transpiring plants.  Radiation and Environmental Biophysics. 11 41-52
  • 35 Ehleringer,  J. R., and Dawson,  T. E.. (1992);  Water uptake by plants: perspectives from stable isotope composition.  Plant, Cell and Environment. 15 1073-1082
  • 36 Ehleringer,  J. R., and Cook,  C. S.. (1998);  Carbon and oxygen isotope ratios of ecosystem respiration along an Oregon conifer transect: preliminary observations based on small-flask sampling.  Tree Physiology. 18 513-519
  • 37 Ehleringer,  J. R.,, Field,  C. B.,, Lin,  Z.-F.,, and Kuo,  C.-Y.. (1986);  Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline.  Oecologia. 70 520-526
  • 38 Ehleringer,  J. R.,, Hall,  A. E.,, and Farquhar,  G. D., editors. (1993) Stable Isotopes and Plant Carbon/Water Relations. San Diego; Academic Press pp. 555
  • 39 Ekblad,  A., and Hogberg,  P.. (2000);  Analysis of δ13C of CO2 distinguishes between microbial respiration of added C4-sucrose and other soil respiration in a C3-ecosystem.  Plant and Soil. 219 197-200
  • 40 Emerman,  S. H., and Dawson,  T. E.. (1996);  Hydraulic lift and its influence on the water content of the rhizosphere - an example from sugar maple, Acersaccharum. .  Oecologia. 108 273-278
  • 41 Epstein,  S.,, Thompson,  P.,, and Yapp,  C. J.. (1977);  Oxygen and hydrogen isotopic ratios in plant cellulose.  Science. 198 1209-1215
  • 42 Evans,  R. D., and Belnap,  J.. (1999);  Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem.  Ecology. 80 150-160
  • 43 Farquhar,  G. D.,, O Leary,  M. H.,, and Berry,  J. A.. (1982);  On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves.  Australian Journal of Plant Physiology. 9 121-137
  • 44 Farquhar,  G. D.,, Barbour,  M. M.,, and Henry,  B. K.. (1998) Interpretation of oxygen isotope composition of leaf material. Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Griffiths, H., ed. Oxford; BIOS pp. 27-62
  • 45 Farquhar,  G. D.,, Henry,  B. K.,, and Styles,  J. M.. (1997);  A rapid on-line technique for determination of oxygen isotope composition of nitrogen-containing organic matter and water.  Rapid Communications in Mass Spectroscopy. 11 1550-1560
  • 46 Farrington,  P.,, Turner,  J. V.,, and Gailitis,  V.. (1996);  Tracing water uptake by jarrah (Eucalyptus marginata) trees using natural abundances of deuterium.  Trees. 11 9-15
  • 47 Flanagan,  L. B., and Ehleringer,  J. R.. (1991);  Effects of mild water stress and diurnal changes in temperature and humidity on the stable oxygen and hydrogen isotopic composition of leaf water in Cornus stolonifera L.  Plant Physiology. 97 298-305
  • 48 Flanagan,  L. B.,, Comstock,  J. P.,, and Ehleringer,  J. R.. (1991);  Comparison of modelled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L.  Plant Physiology. 96 588-596
  • 49 Flanagan,  L. B., and Ehleringer,  J. R.. (1997);  Ecosystem-atmosphere CO2 exchange: interpreting signals of change using stable isotope ratios.  Trends in Ecology and Evolution. 13 10-14
  • 50 Flanagan,  L. B.,, Brooks,  J. R.,, Varney,  G. T.,, and Ehleringer,  J. R.. (1997);  Discrimination against (COO)-18O-16O during photosynthesis and the oxygen isotope ratio of respired CO2 in boreal forest ecosystems.  Global Biogeochemical Cycles. 11 83-98
  • 51 Fogel,  M. L., and Tuross,  N.. (1999);  Transformation of plant biochemicals to geological macromolecules during early diagenesis.  Oecologia. 120 336-346
  • 52 Gardner,  W. S.,, Bootsma,  H. A.,, Evans,  C.,, and John,  P. A. S.. (1995);  Improved chromatographic analysis of 15N/14N ratios in ammonium or nitrate for isotope addition experiments.  Marine Chemistry. 48 271-282
  • 53 Garten,  C. T., Jr., and van Miegroet,  H.. (1994);  Relationships between soil nitrogen dynamics and natural 15N abundance in plant foliage from Great Smoky Mountains National Park.  Canadian Journal of Forest Research. 24 1636-1645
  • 54 Gebauer,  G., and Dietrich,  P.. (1993);  Carbon and nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and beech trees and of understorey vegetation including fungi.  Isotopenpraxis. 29 35-44
  • 55 Gebauer,  G., and Schulze,  E.-D.. (1991);  Carbon and nitrogen isotope ratios in different compartments of a healthy and declining Picea abies forest in the Fichtelgebirge, NE Bavaria.  Oecologia. 87 198-207
  • 56 Gebauer,  G., and Taylor,  A. F. S.. (1999);  15N natural abundance in fruit bodies of different functional groups of fungi in relation to substrate utilization.  New Phytologist. 142 93-101
  • 57 Gebauer,  G.,, Giesemann,  A.,, Schulze,  E.-D.,, and Jäger,  H.-J.. (1994);  Isotope ratios and concentrations of sulfur and nitrogen in needles and soils of Picea abies stands as influenced by atmospheric deposition of sulfur and nitrogen compounds.  Plant and Soil. 164 267-281
  • 58 Gessler,  A.,, Schrempp,  S.,, Rennenberg,  H.,, and Adams,  M. A.. (2001);  Carbon isotope composition of phloem sap, wood and foliage of beech (Fagus sylvatica L.): effects of water availability and radiation during the growing season.  New Phytologist. 150 (in press)
  • 59 Gleixner,  G.,, Danier,  H.-J.,, Werner,  R. A.,, and Schmidt,  H.-L.. (1993);  Correlations between the 13C content of primary and secondary plant products if different cell compartments and that in decomposing basidiomycetes.  Plant Physiology. 102 1287-1290
  • 60 Gleixner,  G.,, Bol,  R.,, and Balesdent,  J.. (1999);  Molecular insight into soil carbon turnover.  Rapid Communications in Mass Spectrometry. 13 1278-1283
  • 61 Gleixner,  G.,, Scrimgeour,  C.,, Schmidt,  H.-L.,, and Viola,  R.. (1998);  Stable isotope distribution in the major metabolites of source and sink organs of Solanum tuberosum L.: a powerful tool in the study of metabolic partitioning in intact plants.  Planta. 207 241-245
  • 62 Griffiths,  H.. (1998) Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Oxford; BIOS Scientific Publishers Xxx pp
  • 63 Grogan,  P.,, Bruns,  T. D.,, and Chapin III,  F. S.. (2000);  Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest.  Oecologia. 122 537-544
  • 64 Hanba,  Y. T.,, Miyazawa,  S.-I., and Terashima,  I.. (1999);  The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests.  Functional Ecology. 13 632-639
  • 65 Handley,  L. L., and Scrimgeour,  C. M.. (1997);  Terrestrial plant ecology and 15N natural abundance: The present limits to interpretation for uncultivated systems with original data from a Scottish oldfield.  Advances in Ecological Research. 27 133-212
  • 66 Handley,  L. L.,, Scrimgeour,  C. M.,, and Raven,  J. A.. (1998) 15N natural abundance levels in terrestrial vascular plants: a précis. Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Griffiths, H., ed. Oxford; BIOS Scientific Publishers pp. 89-98
  • 67 Handley,  L. L.,, Brendel,  O.,, Scrimgeour,  C. M.,, Schmidt,  S.,, Raven,  J. A.,, Turnbull,  M. H.,, and Stewart,  G. R.. (1996);  The 15N natural abundance patterns of field-collected fungi from three kinds of ecosystems.  Rapid Communications in Mass Spectrometry. 10 974-978
  • 68 Handley,  L. L.,, Austin,  A. T.,, Robinson,  D.,, Scrimgeour,  C. M.,, Raven,  J. A.,, Heaton,  T. H. E.,, Schmidt,  S.,, and Stewart,  G. R.. (1999);  The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability.  Australian Journal of Plant Physiology. 26 185-199
  • 69 Hobbie,  E. A.,, Macko,  S. A.,, and Williams,  M.. (2000);  Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions.  Oecologia. 122 273-283
  • 70 Hobbie,  E. A.,, Macko,  S. A.,, and Shugart,  H. H.. (1999 a);  Interpretation of nitrogen isotope signatures using the NIFTE model.  Oecologia. 120 405-415
  • 71 Hobbie,  E. A.,, Macko,  S. A.,, and Shugart,  H. H.. (1999 b);  Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence.  Oecologia. 118 353-360
  • 72 Hobbie,  E. A.,, Macko,  S. A.,, and Shugart,  H. H.. (1998);  Patterns in N dynamics and N isotopes during primary succession in Glacier Bay, Alaska.  Chemical Geology. 152 3-11
  • 73 Hobson,  K. A.. (1999);  Tracing origins and migration of wildlife using stable isotopes: a review.  Oecologia. 120 314-326
  • 74 Hobson,  K. A., and Wassenaar,  L. I.. (1997);  Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers.  Oecologia. 109 142-148
  • 75 Högberg,  P.. (1997);  Tansley Review No. 95. 15N natural abundance in soil-plant systems.  New Phytologist. 137 179-203
  • 76 Högberg,  P.,, Johannisson,  C.,, Högberg,  M.,, Högbom,  L.,, Näsholm,  T.,, and Hallgren,  J. E.. (1995);  Measurements of abundances of 15N and 13C as tools in retrospective studies of N balances and water stress in forests: a discussion of preliminary results.  Plant and Soil. 168 125-133
  • 77 Hubbard,  R. M.,, Bond,  B. J.,, and Ryan,  M. G.. (1999);  Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees.  Tree Physiology. 19 165-172
  • 78 Hultine,  K. R., and Marshall,  J. D.. (2000);  Altitude trends in conifer leaf morphology and stable carbon isotope composition.  Oecologia. 123 32-40
  • 79 Johnston,  A. M.,, Scrimgeour,  C. M.,, Henry,  M. O.,, and Handley,  L. L.. (1999);  Isolation of NO3 --N as 1-phenylazo-2-napthol (Sudan-1) for measurement of δ15N.  Rapid communications in Mass Spectroscopy. 13 1531-1534
  • 80 Kellman,  L., and Hillaire-Marcel,  C.. (1998);  Nitrate cycling in streams: using natural abundances of NO3-15N to measure in-situ denitrification.  Biogeochemistry. 41 273-292
  • 81 Kirchmarr,  H.,, Pichlmayer,  F.,, and Gerzabek,  M. H.. (1996);  Sulfur balances and 34S abundance in a long-term fertilizer experiment.  Soil Biology and Biochemistry. 59 174-178
  • 82 Koba,  K.,, Tokuchi,  N.,, Wada,  E.,, Nakajima,  T.,, and Iwatsubo,  G.. (1997);  Intermittent denitrification: the application of a 15N natural abundance method to a forested ecosystem.  Geochimica et Cosmochimica Acta. 61 5040-5043
  • 83 Koopmans,  C. J.,, van Dam,  D.,, Tietama,  A.,, and Verstraten,  J. M.. (1997);  Natural 15N abundance in two nitrogen saturated forest ecosystems.  Oecologia. 111 470-480
  • 84 Korol,  R. L.,, Kirschbaum,  M. U. F.,, Farquhar,  G. D.,, and Jeffreys,  M.. (1999);  Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. .  Tree Physiology. 19 551-562
  • 85 Körner,  C. H.,, Farquhar,  G. D.,, and Roksandic,  S.. (1988);  A global survey of carbon isotope discrimination in plants from high altitude.  Oecologia. 74 623-632
  • 86 Körner,  C. H.,, Farquhar,  G. D.,, and Wong,  S. C.. (1991);  Carbon isotope discrimination by plants follows latitudinal and altitudinal trends.  Oecologia. 88 30-40
  • 87 Lajtha,  K., and Michener,  R. H., editors. (1994) Stable Isotopes in Ecology and Environmental Science. London; Blackwell
  • 88 Lauf,  J., and Gebauer,  G.. (1998);  On-line analysis of stable isotopes of nitrogen in NH3, NO and NO2 at natural abundance levels.  Analytical Chemistry. 70 2750-2756
  • 89 Lauteri,  M.,, Scartazza,  A.,, Guido,  M. C., , and Brugnoli,  E.. (1997);  Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments.  Functional Ecology. 11 675-683
  • 90 Leavitt,  S. W., and Long,  A.. (1986);  Stable-carbon isotope variability in tree foliage and wood.  Ecology. 67 1002-1010
  • 91 Lichtfouse,  E.,, Dou,  S.,, Giradin,  C.,, Grably,  M.,, Balesdent,  J.,, Behar,  F.,, and Vandenbroucke,  M.. (1995);  Unexpected 13C-enrichment of organic components from wheat crops: evidence for the in situ origin of soil organic matter.  Organic Geochemistry. 23 865-868
  • 92 Lloyd,  J., and Farquhar,  G. D.. (1994);  13C discrimination during CO2 assimilation by the terrestrial biosphere.  Oecologia. 99 201-215
  • 93 Lloyd,  J.,, Kruijt,  B.,, Hollinger,  D. Y.,, Grace,  J.,, Francey,  R. J.,, Wong,  S. C.,, Kelliher,  F. M.,, Miranda,  A. C.,, Gash,  K. H. C.,, Vygodskaya,  N. N.,, Wright,  I. R.,, Miranda,  H. S.,, Farquhar,  G. D.,, and Schulze,  E.-D.. (1996);  Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison between a rain forest in Amazonia and a boreal forest in Siberia.  Australian Journal of Plant Physiology. 23 371-399
  • 94 Macfarlane,  C., and Adams,  M. A.. (1998);  δ13C of wood in growth-rings indicates cambial activity in drought-stressed trees of Eucalyptus globulus. .  Functional Ecology. 12 655-664
  • 95 Macfarlane,  C.,, Warren,  C. R.,, White,  D. A.,, and Adams,  M. A.. (1999);  A rapid and simple method for processing wood to cellulose for analysis of carbon isotope discrimination in tree rings.  Tree Physiology. 19 831-835
  • 96 Mao,  S.-H.,, Mao,  X.-A.,, Xu,  Z.-H.,, Hu,  J.-Z.,, Yang,  B.-L.,, Li,  L.-Y.,, Ye,  C.-H.,, and Saffigna,  P.. (1998);  CP/MAS 13C spectral editing of dried pine leaves.  Solid-state Nuclear Magnetic Resonance. 12 31-36
  • 97 Marshall,  J. D., and Zhang,  J.. (1994);  Carbon isotope discrimination and water use efficiency of native plants of the north-central Rockies.  Ecology. 75 1887-1895
  • 98 Marshall,  J. D.,, Dawson,  T. E.,, and Ehleringer,  J. R.. (1994);  Integrated nitrogen, carbon, and water relations of a xylem-tapping mistletoe following nitrogen fertilization of the host.  Oecologia. 100 430-438
  • 99 Martinelli,  L. A.,, Pessenda,  L. C. R.,, Espinoza,  E.,, Camargo,  P. B.,, Telles,  E. C.,, Cerri,  C. C.,, Aravena,  R.,, Richey,  J.,, and Trumbore,  S.. (1996);  Carbon-13 variation with depth in soils of Brazil and climate change during the Quaternary.  Oecologia. 106 376-381
  • 100 Martinelli,  L. K.,, Piccolo,  M. C.,, Townsend,  A. R.,, Vitousek,  P. M.,, Cuevas,  E.,, McDowell,  W.,, Robertson,  G. P.,, Santos,  O. C.,, and Treseder,  K.. (1999);  Nitrogen stable isotope composition of leaves and soil: Tropical versus temperate forests.  Biogeochemistry. 46 45-65
  • 101 McIlwee,  A. P., and Johnson,  C. N.. (1998);  The contribution of fungus to the diets of three mycophagous marsupials in eucalyptus forests, revealed by stable isotope analysis.  Functional Ecology. 12 223-231
  • 102 Meier-Augenstein,  W.. (1999);  Applied gas chromatography coupled to isotope ratio mass spectrometry.  Journal of Chromatography. 842 351-371
  • 103 Mitchell,  M. J.,, Krouse,  H. R.,, Mayer,  B.,, Stam,  A. C.,, and Zhang,  Y.. (1998) Use of stable isotopes in evaluating biogeochemistry of forest ecosystems. Isotope Tracers in Catchment Hydrology. Kendall, R. C. and McDonnell, J., eds. The Netherlands; Elsevier pp. 234-256
  • 104 Monaghan,  J. M.,, Scrimgeour,  C. M.,, Stein,  W. M.,, Zhao,  F. J.,, and Evans,  E. J.. (1999);  Sulphur accumulation and redistribution in wheat (Triticum aestivum): a study using stable sulphur isotope ratios as a tracer system.  Plant, Cell and Environment. 22 831-839
  • 105 Mörth,  C.-M.,, Torssander,  P.,, Minoru,  K.,, and Hultberg,  H.. (1999);  Sulfur isotope values in a forested catchment over four years: Evidence for oxidation and reduction processes.  Biogeochemistry. 44 51-71
  • 106 Mulvaney,  R. L.,, Khan,  S. A.,, Stevens,  W. B.,, and Mulvaney,  C. S.. (1997);  Improved diffusion methods for determination of inorganic nitrogen in soil extracts and water.  Biology and Fertility of Soils. 24 413-420
  • 107 Nguyen-Queyrens,  A.,, Ferhi,  A.,, Loustau,  D.,, and Guehl,  J.-M.. (1998);  Within-ring δ13C spatial variability and inter-annual variations in wood of Pinus pinaster.  Canadian Journal of Forest Research. 28 766-773
  • 108 O Leary,  M. H.. (1981);  Carbon isotope fractionation in plants.  Phytochemistry. 20 553-567
  • 109 Osorio,  J., and Pereira,  J. S.. (1994);  Genotypic differences in water use efficiency and 13C discrimination in Eucalyptus globulus. .  Tree Physiology. 14 871-882
  • 110 Panek,  J. A.. (1996);  Correlations between stable carbon-isotope abundance and hydraulic conductivity in Douglas-fir across a climate gradient in Oregon, USA.  Tree Physiology. 16 747-755
  • 111 Panek,  J. A., and Waring,  R. H.. (1997);  Stable carbon isotopes as indicators of limitations to forest growth imposed by climate stress.  Ecological Applications. 7 854-863
  • 112 Pate,  J. S.,, Unkovich,  M. J.,, Erskine,  P. D.,, and Stewart,  G. R.. (1998);  Australian mulga ecosystems - 13C and 15N natural abundances of biota components and their ecophysiological significance.  Plant, Cell and Environment. 21 1231-1242
  • 113 Pate,  J. S., and Arthur,  D.. (1998);  δ13C analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globulus. .  Oecologia. 117 301-311
  • 114 Pate,  J.,, Shedley,  E.,, Arthur,  D.,, and Adams,  M. A.. (1998);  Spatial and temporal variations in phloem sap composition of plantation-grown Eucalyptus globulus. .  Oecologia. 117 312-322
  • 115 Phillips,  S. L., and Ehleringer,  J. R.. (1995);  Limited uptake of summer precipiation by bigtooth maple (Acer grandidendatum Nutt) and Gambels oak (Quercus gambeli Nutt).  Trees. 9 214-219
  • 116 Picon,  C.,, Ferhi,  A.,, and Guehl,  J. M.. (1997);  Concentration and δ13C of leaf carbohydrates in relation to gas exchange in Quercus robur under elevated CO2 and drought.  Journal of Experimental Botany. 48 1547-1556
  • 117 Preston,  C. M.,, Trofymow,  J. A.,, Sayer,  B. G.,, and Niu,  J. N.. (1997);  13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies.  Canadian Journal of Botany. 75 1601-1613
  • 118 Raven,  J. A.. (1987) The application of mass spectrometry to biochemical and physiological studies. The Biochemistry of Plants, Vol. 13. Davies, D. D., ed. London; Longmans pp. 127-179
  • 119 Rice,  S. K.. (2000);  Variation in carbon isotope discrimination within and among Sphagnum species in a temperate wetland.  Oecologia. 123 1-8
  • 120 Robinson,  D.,, Handley,  L. L.,, and Scrimgeour,  C. M.. (1998);  A theory for 15N/14N fractionation in nitrate-grown vascular plants.  Planta. 205 397-406
  • 121 Roden,  J. S., and Ehleringer,  J. R.. (1999 a);  Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon model under wide ranging environmental conditions.  Plant Physiology. 120 1165-1173
  • 122 Roden,  J. S., and Ehleringer,  J. R.. (1999 b);  Hydrogen and oxygen isotope ratio of tree-ring cellulose for riparian trees grown under long-term hydroponically controlled environments.  Oecologia. 121 467-477
  • 123 Roden,  J. S.,, Lin,  G.,, and Ehleringer,  J. R.. (2000);  A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose.  Geochimica et Cosmochimica Acta. 64 21-35
  • 124 Roupsard,  O.,, Joly,  H. I.,, and Dreyer,  E.. (1998);  Variability of initial growth, water-use efficiency and carbon isotope discrimination in seedlings of Faidherbia albida (Del.) A. Chev., a multipurpose tree of semi-arid Africa. Provenance and drought effects.  Annales des Sciences Forestiers. 55 329-348
  • 125 Rundel,  P. W.,, Ehleringer,  J. R.,, and Nagy,  K. A., editors. (1989) Stable Isotopes in Ecological Research. Berlin; Springer-Verlag
  • 126 Ryan,  M. G., and Yoder,  B. J.. (1997);  Hydraulic limits to tree growth.  BioScience. 47 235-242
  • 127 Saurer,  M.,, Allen,  K.,, and Siegwolf,  R.. (1997);  Correlating δ13C and δ18O in cellulose of trees.  Plant, Cell and Environment. 20 1543-1550
  • 128 Saurer,  M.,, Robertson,  I.,, Siegwolf,  R. T. W.,, and Leuenberger,  M.. (1998);  Oxygen isotopes analysis of cellulose: an interlaboratory comparison.  Analytical Chemistry. 70 2074-2080
  • 129 Scheidegger,  Y.,, Saurer,  M.,, Bahn,  M.,, and Siegwolf,  R.. (2000);  Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model.  Oecologia. 125 350-357
  • 130 Schmidt,  S., and Stewart,  G. R.. (1997);  Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum).  Plant, Cell and Environment. 20 1231-1241
  • 131 Schulze,  E.-D.,, Farquhar,  G. D.,, Millar,  J. M.,, Schulze,  W.,, Walker,  B. H.,, and Williams,  R. J.. (1999);  Interpretation of increased foliar δ15N in woody species along a rainfall gradient in northern Australia.  Australian Journal of Plant Physiology. 26 296-298
  • 132 Schulze,  E.-D.,, Williams,  R. J.,, Farquhar,  G. D.,, Schulze,  W.,, Langridge,  J.,, Millar,  J. M.,, and Walker,  B. H.. (1996);  Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia.  Australian Journal of Plant Physiology. 26 296-298
  • 133 Schulze,  E.-D.,, Caldwell,  M. M.,, Canadell,  J.,, Mooney,  H. A.,, Jackson,  R. B.,, Parson,  D.,, Scholes,  R.,, Sala,  O. E.,, and Trimborn,  P.. (1998);  Downward flux of water through roots (i.e., inverse hydraulic lift) in dry kalahari sands.  Oecologia. 115 460-462
  • 134 Schwartz,  D.,, Deforesta,  H.,, Mariotti,  A.,, Balesdent,  J.,, Massimba,  J. P.,, and Girardin,  C.. (1996);  Present dynamics of the savanna-forest boundary in the Congolese Mayombe - a pedological, botanical and isotopic (13C and 14C) study.  Oecologia. 106 516-524
  • 135 Scrimgeour,  C. M., and Robinson,  D.. (1998) Stable isotope analysis and applications. Soil and Environmental Analysis, 3rd Edition. Smith, K. A. and Cresser, M. S., eds. New York; Marcel Dekker
  • 136 Scrimgeour,  C. M., and Robinson,  D.. (2001) Stable isotope analysis and applications. Soil and Environmental Analysis, 4th Edition. Smith, K. A. and Cresser, M. S., eds. New York; Marcel Dekker
  • 137 Smith,  D. M.,, Jackson,  N. A.,, Roberts,  J. M.,, and Ong,  C. K.. (1999);  Reverse flow of sap in tree roots and downward siphoning of water by Grevillea robusta. .  Functional Ecology. 13 256-264
  • 138 Sparks,  J. P., and Ehleringer,  J. R.. (1997);  Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects.  Oecologia. 109 362-367
  • 139 Sternberg,  L.. (1989) Oxygen and hydrogen isotope ratios in plant cellulose: mechanisms and applications. Stable Isotopes in Ecological Research. Rundel, P. W., Ehleringer, J. R., and Nagy, K. A., eds. Berlin; Springer pp. 214-241
  • 140 Stewart,  G. R.,, Turnbull,  M. H.,, Schmidt,  S., and Erskine,  P. D.. (1995);  13C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability.  Australian Journal of Plant Physiology. 22 51-55
  • 141 Stitt,  M.. (1991);  Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells.  Plant, Cell and Environment. 14 741-762
  • 142 Stock,  W. D.,, Dlamini,  T. S.,, and Cowling,  R. M.. (1999);  Plant induced fertile islands as possible indicators of desertification in a succulent desert ecosystem in northern Namaqualand, South Africa.  Plant Ecology. 142 161-167
  • 143 Syvertsen,  J. P.,, Smith,  M. L.,, Lloyd,  J.,, and Farquhar,  G. D.. (1997);  Net carbon dioxide assimilation, carbon isotope discrimination, growth, and water-use efficiency of Citrus trees in response to nitrogen status.  Journal of the American Society of Horticultural Science. 122 226-232
  • 144 Taylor,  A. F. S.,, Högbom,  L.,, Högberg,  M.,, Lyon,  A J. E.,, Näsholm,  T.,, and Högberg,  P.. (1997);  Natural 15N abundance in fruit bodies of extomycorrhizal fungi from boreal forests.  New Phytologist. 136 713-720
  • 145 Tognetti,  R.,, Michelozzi,  M.,, Lauteri,  M.,, Brugnoli,  E.,, and Giannini,  R.. (2000);  Geographic variation in growth, carbon isotope discrimination, and monoterpene composition in Pinus pinaster Ait. provenances.  Canadian Journal of Forest Research. 30 1682-1690
  • 146 Van Dam,  D., and Van Breemen,  N.. (1995);  NICCCE: a model for cycling of nitrogen and carbon isotopes in coniferous forest ecosystems.  Ecological Modelling. 79 255-275
  • 147 Valentini,  R.,, Scarascia Mugnozza,  G. E.,, and Ehleringer,  J. R.. (1992);  Hydrogen and carbon isotope ratios of selected species of a Mediterranean macchia ecosystem.  Functional Ecology. 6 627-631
  • 148 Valentini,  R.,, Anfodillo,  T.,, and Ehleringer,  J. R.. (1994);  Water sources and carbon isotope composition (δ13C) of selected tree species of the Italian Alps.  Canadian Journal of Forest Research. 24 1575-1578
  • 149 Vitousek,  P. M.,, Field,  C. B.,, and Matson,  P. A.. (1990);  Variation in foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance?.  Oecologia. 84 362-370
  • 150 Vogel,  J. C.. (1980) Fractionation of Carbon Isotopes During Photosynthesis. Berlin; Springer-Verlag
  • 151 Walcroft,  A. S.,, Silvester,  W. B.,, Grace,  J. C.,, Carson,  S. D.,, and Waring,  R. H.. (1996);  Effects of branch length on carbon isotope discrimination in Pinus radiata. .  Tree Physiology. 16 281-286
  • 152 Wang,  X. F.,, Yakir,  D.,, and Avishai,  M.. (1998);  Non-climatic variations in the oxygen isotopic compositions of plants.  Global Change Biology. 4 835-849
  • 153 Warren,  C. R., and Adams,  M. A.. (2000);  Water availability and branch length determine δ13C in foliage of Pinus pinaster. .  Tree Physiology. 20 637-643
  • 154 Warren,  C. R.,, McGrath,  J.,, and Adams,  M. A.. (2001);  Water availability and carbon isotope discrimination in conifers.  Oecologia. 127 476-486
  • 155 Wassenaar,  L. I., and Hobson,  K. A.. (1998);  Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence.  Proceedings of the National Academy of Science. 95 15436-15439
  • 156 Wassenaar,  L. I., and Hobson,  K. A.. (2000);  Stable carbon and hydrogen isotope ratios reveal breeding origins of red-winged blackbirds.  Ecological Applications. 10 911-916
  • 157 Xu,  Z. H.,, Saffigna,  P. G.,, Farquhar,  G. D.,, Simpson,  J. A.,, Haines,  R. J.,, Walker,  S.,, Osborne,  D. O.,, and Guinto,  D.. (2000);  Carbon isotope discrimination and oxygen isotope composition in clones of the F1 hybrid between slash pine and Caribbean pine in relation to tree growth, water-use efficiency and foliar nutrient concentration.  Tree Physiology. 20 1209-1217
  • 158 Yakir,  D.. (1992);  Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates.  Plant, Cell and Environment. 15 1005-1020
  • 159 Yakir,  D.. (1998) Oxygen-18 in leaf water: a crossroad for plant-associated isotopic signals. Stable Isotopes, Integration of Biological and Geochemical Processes. Griffiths, H., ed. Oxford; Bios Scientific Publishers pp. 147-168
  • 160 Yoneyama,  T.. (1995) Nitrogen metabolism and fractionation of nitrogen isotopes in plants. Stable Isotopes in the Biosphere. Wada, E., Yoneyama, T., Minagawa, M., Ando, T., and Fry, B., eds. Kyoto; Kyoto University Press pp. 92-102
  • 161 Yoneyama,  T.,, Handley,  L. L.,, Scrimgeour,  C. M.,, Fisher,  D. B.,, and Raven,  J. A.. (1997);  Variations of the natural abundances of nitrogen and carbon isotopes in Triticum aestivum, with special reference to phloem and xylem exudates.  New Phytologist. 137 205-213
  • 162 Zhang,  J. W., and Cregg,  B. M.. (1996);  Variation in stable carbon isotope discrimination among and within exotic conifer species grown in eastern Nebraska, USA.  Forest Ecology and Management. 83 181-187
  • 163 Zhang,  J. W.,, Feng,  Z.,, Cregg,  B. M.,, and Schumann,  C. M.. (1997);  Carbon isotopic composition, gas exchange, and growth of three populations of ponderosa pine differing in drought tolerance.  Tree Physiology. 17 461-466
  • 164 Zhang,  Y.,, Mitchell,  M. J.,, Christ,  M.,, Likens,  G. E.,, and Krouse,  H. R.. (1998);  Stable sulfur isotopic biogeochemistry of the Hubbard Brook Experimental Forest, New Hampshire.  Biogeochemistry. 41 259-275
  • 165 Zubrinich,  T. M.,, Loveys,  B.,, Gallasch,  S.,, Seekamp,  J. V.,, and Tyerman,  S. D.. (2000);  Tolerance of salinized floodplain conditions in a naturally occurring Eucalyptus hybrid related to a lowered plant water potential.  Tree Physiology. 20 953-963

M. A. Adams

Forest Science Centre

Water St
Creswick
Vic. 3363
Australia

Email: adamsma@unimelb.edu.au

Section Editor: H. Rennenberg