Zusammenfassung.
Zielsetzung: Der Einsatz von Antithrombin (AT, Antithrombin III) bei Patienten mit Verbrauchskoagulopathie
(DIC) und/oder Sepsis wird wegen inkonsistenter experimenteller und klinischer Ergebnisse
hinsichtlich der Beeinflussung der Letalität kontrovers diskutiert. Inzwischen sind
zahlreiche klinische Studien beendet worden, und experimentelle Untersuchungen haben
den Wirkmechanismus des AT weiter aufgeklärt. In einer systematischen Zusammenfassung
der Literatur (Medline, Handsuche) werden die gesicherten Ergebnisse der Physiologie
und Pathophysiologie der AT-Wirkung sowie die experimentellen und klinischen Effekte
der AT-Zufuhr analysiert. Ergebnisse: AT bindet physiologischerweise an endotheliale Mucopolysaccharide, die Glykosaminoglykane
(GAG). Erst diese Bindung führt zu einer Konformationsänderung des AT, die seine Aktivität
gegenüber aktivierten Gerinnungsfaktoren steigert. Experimente zeigen, daß die AT-Zufuhr
die DIC verkürzt und zu geringeren Fibrinablagerungen in den Organen führt. Die hochdosierte
Zufuhr von AT - im Experiment werden bei mehr als 250 E kg-1 i. v. in der Regel nach ca. 4 h Aktivitäten von 200 bis 500 % erreicht - senkt die
Letalität bei DIC und hat außerdem antiinflammatorische Effekte, die wahrscheinlich
auf einer Steigerung der endothelialen Prostacyclinsynthese durch Bindung des AT an
den endothelialen GAGs beruhen. Diese Effekte bestehen in einer Senkung der Konzentration
proinflammatorischer Mediatoren, der Verminderung der leukozytären Adhäsion (rolling
und sticking) und der Verbesserung von Organfunktionen. Im Experiment verhindert Heparin
diese gewünschten Effekte, da es AT bindet und es somit von seinen endothelialen Bindungspartnern,
den Glykosaminoglykanen, fernhält. Die Zufuhr von AT-Konzentraten führt bei Patienten
mit DIC zu einer signifikanten Verringerung der laboratoriumsdiagnostisch erkennbaren
pathologischen Gerinnungsaktivierung. Auch bei septischen Patienten kommt es zu einer
Verkürzung der DIC und zu einer Verbesserung von Organfunktionen. Signifikante Überlebensvorteile
konnten jedoch weder für Patienten mit DIC noch in einer multizentrischen Studie mit
über 2000 Patienten mit Sepsis nachgewiesen werden. Schlussfolgerung: Die AT-Substitution senkt im Experiment und beim Menschen den Aktivierungsgrad der
Prokoagulatoren und kann damit die systemische Thrombinbildung signifikant reduzieren.
Als therapeutische Option ist die Verkürzung der Dauer einer klinisch und laboratoriumsmedizinisch
definierten DIC durch AT-Konzentrate anzusehen, die nicht nur experimentell, sondern
auch bei Patienten nachgewiesen ist. An den bisher untersuchten Patientenzahlen konnte
eine statistische Signifikanz hinsichtlich der Verbesserung der Letalität der Patienten
allerdings nicht gezeigt werden. Die Diagnose „Sepsis / SIRS” stellt nach den jetzt
vorliegenden Studienergebnissen keine Indikation für eine hochdosierte AT-Substitution
mit 30.000 E über 4 Tage dar.
Actions of Antithrombin (AT): Experimental and Clinical Results.
Objective: Experimental and clinical effects of antithrombin (AT) have been studied widely.
However, the therapeutic use of antithrombin concentrates remains controversial due
to a major discrepancy between experimental and clinical data concerning AT induced
effects on mortality. Meanwhile, studies including larger numbers of patients have
been performed, and experimental data have elucidated the mechanisms by which AT may
induce antiinflammatory effects. A systematical review of experimental and clinical
studies was performed using databases (Medline) and hand-search. Results: Binding of AT to endothelial glycosaminoglycans has been established as a prerequisite
for coagulation factor inhibition and induction of endothelial prostacyclin production.
Heparin shifts AT activity away from endothelium related effects towards systemic
anticoagulation. Animals given more than 250 U AT show significantly reduced mortality
in DIC and sepsis or septic shock. Antiinflammatory effects are mediated by prostacyclin
and include the reduction of proinflammatory mediators, the reduction of leucocyte
rolling and sticking, and improvement of organ function. AT concentrates have been
shown to reduce procoagulant turnover in patients with DIC. Laboratory markers of
DIC normalize within significantly shorter time periods when AT is administered. In
septic patients DIC is markedly attenuated and organ function can be improved significantly.
However, survival has never been shown to improve with AT-therapy. Even a multicenter
trial including more than 2000 patients with sepsis could not demonstrate a better
outcome when 30.000 U AT were given within four days. Of note, 90-day mortality was
significantly reduced only in patients without heparin. Whether heparin abolishes
antiinflammatory effects of AT in man deserves further study. Conclusions: AT-infusion in patients with DIC aimed at activities of 80-100% reduces procoagulant
turnover and hence attenuates disseminated fibrin deposition and coagulation factor
and inhibitor consumption. So far, high-dose AT-infusions for 4 days in septic patients
without DIC are not indicated since no effect on survival could be shown.
Schlüsselwörter:
Antithrombin - Blutgerinnung - DIC, disseminierte intravasale Gerinnung - Sepsis -
Septischer Schock
Key words:
Antithrombin (Antithrombin III) - Coagulation - DIC - Sepsis - Septic Shock
Literatur
- 1
Blomback M, Abildgaard U, van-den-Besselaar A M. et al .
Nomenclature of quantities and units in thrombosis and haemostasis (recommendation
1993). A Collaborative project of the Scientific and Standardization Committee of
the International Society on Thrombosis and Haemostasis (ISTH/ SSC) and the Commission/Committee
on Quantities and Units (in Clinical Chemistry) of the International Union of Pure
and Applied Chemistry-International Federation of Clinical Chemistry (IUPAC-IFCC/CQU(CC)).
Thromb Haemost.
1994;
71
375-394
- 2
Schmidt A.
Über den flüssigen Zustand des Blutes im Organismus.
Zbl Physiol.
1890;
4
257-279
- 3
Gromnica I E, Ziemer S.
Treatment with AT III concentrates in hereditary and acquired AT III deficiency.
Folia Haematol Int Mag Klin Morphol Blutforsch.
1988;
115
307-313
- 4
Thaler E, Lechner K.
Antithrombin III deficiency and thromboembolism.
Clin Haematol.
1981;
10
369-390
- 5
Rosenberg R D.
Actions and interactions of antithrombin and heparin.
N Engl J Med.
1975;
292
146-151
- 6
Rosenberg R D, Bauer K A.
Thrombosis in inherited deficiencies of antithrombin, protein C, and protein S.
Hum Pathol.
1987;
18
253-262
- 7
Quick A J.
The normal antithrombin of the blood and its relations to heparin.
Am J Physiol.
1938;
123
712-719
- 8
Shifman M A, Pizzo S V.
The in vivo metabolism of antithrombin III and antithrombin III complexes.
J Biol Chem.
1982;
257
3243-3248
- 9
Marcum J A, Reilly C F, Rosenberg R D.
The role of specific forms of heparan sulfate in regulating blood vessel wall function.
Prog Hemost Thromb.
1986;
8
185-215
- 10
Marcum J A, McKenney J B, Rosenberg R D.
Acceleration of thrombin-antithrombin complex formation in rat hindquarters via heparinlike
molecules bound to the endothelium.
J Clin Invest.
1984;
74
341-350
- 11
Okajima K, Ueyama H, Hashimoto Y . et al .
Homozygous variant of antithrombin III that lacks affinity for heparin, AT III Kumamoto.
Thromb Haemost.
1989;
61
20-24
- 12
Tulinsky A.
Molecular Interactions of Thrombin.
Semin Thromb Hemost.
1996;
22
117-124
- 13
De-Cristofaro R, De-Candia E, Rutella S, Weitz J I.
The Asp(272)-Glu(282) region of platelet glycoprotein Ibalpha interacts with the heparin-binding
site of alpha-thrombin and protects the enzyme from the heparin-catalyzed inhibition
by antithrombin III.
J Biol Chem.
2000;
275
3887-3895
- 14
Harenberg J, Stehle G, Augustin J, Zimmermann R.
Comparative human pharmacology of low molecular weight heparins.
Semin Thromb Hemost.
1989;
15
414-423
- 15
Bratt G, Tornebohm E, Widlund L, Lockner D.
Low molecular weight heparin (KABI 2165, Fragmin): pharmacokinetics after intravenous
and subcutaneous administration in human volunteers.
Thromb Res.
1986;
42
613-620
- 16
Horie S, Ishii H, Kazama M.
Heparin-like glycosaminoglycan is a receptor for antithrombin III-dependent but not
for thrombin-dependent prostacyclin production in human endothelial cells.
Thromb Res.
1990;
59
895-904
- 17
Yamauchi T, Umeda F, Inoguchi T, Nawata H.
Antithrombin III stimulates prostacyclin production by cultured aortic endothelial
cells.
Biochem Biophys Res Commun.
1989;
163
1404-1411
- 18
Moncada S, Gryglewski R J, Bunting S, Vane J R.
A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from
prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet
aggregation.
Prostaglandins.
1976;
12
715-737
- 19
Bunting S, Gryglewski R, Moncada S, Vane J R.
Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin
X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation.
Prostaglandins.
1976;
12
897-913
- 20
Gryglewski R J.
Prostaglandins and the mechanism of drug action in circulatory system.
Acta Biol Med Ger.
1976;
35
1097-1098
- 21
Siegl A M, Smith J B, Silver M J. et al .
Selective binding site for [3H]prostacyclin on platelets.
J Clin Invest.
1979;
63
215-220
- 22
Cummings C J, Sessler C N, Beall L D. et al .
Soluble E-selectin levels in sepsis and critical illness. Correlation with infection
and hemodynamic dysfunction.
Am J Respir Crit Care Med.
1997;
156
431-437
- 23
Ehrman M L, Jaffe E A.
Prostacyclin (PGI2) inhibits the development in human platelets of ADP and arachidonic
acid-induced shape change and procoagulant activity.
Prostaglandins.
1980;
20
1103-1116
- 24
Weksler B B, Marcus A J, Jaffe E A.
Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial
cells.
Proc Natl Acad Sci USA.
1977;
74
3922-3926
- 25
Fujimoto T, Ohara S, Hawiger J.
Thrombin-induced exposure and prostacyclin inhibition of the receptor for factor VIII/von
Willebrand factor on human platelets.
J Clin Invest.
1982;
69
1212-1222
- 26
Hawiger J, Parkinson S, Timmons S.
Prostacyclin inhibits mobilisation of fibrinogen-binding sites on human ADP- and thrombin-treated
platelets.
Nature.
1980;
283
195-197
- 27
Bunting S, Simmons P M, Moncada S.
Inhibition of platelet activation by prostacyclin: possible consequences in coagulation
and anticoagulation.
Thromb Res.
1981;
21
89-102
- 28
Schmid S G, Zweifach B W.
RBC velocity profiles in arterioles and venules of the rabbit omentum.
Microvasc Res.
1975;
10
153-164
- 29
Weiss H J, Turitto V T.
Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation
on subendothelium.
Blood.
1979;
53
244-250
- 30
Radomski M W, Palmer R M, Moncada S.
Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and
prostacyclin in platelets.
Br J Pharmacol.
1987;
92
181-187
- 31
Orchard M A, Robinson C.
Stability of prostacyclin in human plasma and whole blood: studies on the protective
effect of albumin.
Thromb Haemost.
1981;
46
645-647
- 32
Weksler B B, Ley C W, Jaffe E A.
Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and
the ionophore A 23187.
J Clin Invest.
1978;
62
923-930
- 33
Hong S L.
Effect of bradykinin and thrombin on prostacyclin synthesis in endothelial cells from
calf and pig aorta and human umbilical cord vein.
Thromb Res.
1980;
18
787-795
- 34
Morita I, Kanayasu T, Murota S.
Kallikrein stimulates prostacyclin production in bovine vascular endothelial cells.
Biochim Biophys Acta.
1984;
792
304-309
- 35
Rampart M, Bult H, Herman A G.
Activated complement and anaphylatoxins increase the in vitro production of prostacyclin
by rabbit aorta endothelium.
Naunyn Schmiedebergs Arch Pharmacol.
1983;
322
158-165
- 36
Yoshida N, Weksler B, Nachman R.
Purification of human platelet calcium-activated protease. Effect on platelet and
endothelial function.
J Biol Chem.
1983;
258
7168-7174
- 37
Marcus A J, Weksler B B, Jaffe E A, Broekman M J.
Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial
cells.
J Clin Invest.
1980;
66
979-986
- 38
Eisenhut T, Sinha B, Grottrup Wolfers E. et al .
Prostacyclin analogs suppress the synthesis of tumor necrosis factor-alpha in LPS-stimulated
human peripheral blood mononuclear cells.
Immunopharmacology.
1993;
26
259-264
- 39
Crutchley D J, Conanan L B, Que B G.
Effects of prostacyclin analogs on the synthesis of tissue factor, tumor necrosis
factor-alpha and interleukin-1 beta in human monocytic THP-1 cells.
J Pharmacol Exp Ther.
1994;
271
446-451
- 40
Matthias F R, Ditter H.
The effects of an infusion of prostacyclin on their endotoxin shock in rabbits.
Folia Haematol Int Mag Klin Morphol Blutforsch.
1990;
117
209-218
- 41
Okajima K, Uchiba M.
The anti-inflammatory properties of antithrombin III: new therapeutic implications.
Semin Thromb Hemost.
1998;
24
27-32
- 42
Pulletz S, Lehmann C h, Volk T h. et al .
Influence of heparin and hirudin on endothelial binding of antithrombin in experimental
thrombinemia.
Crit Care Med.
2000;
28
2881-2886
- 43
Gray E, Souter P, Roemisch J, Poole S.
Antithrombin inhibits in vitro lipopolysaccharide induced procoagulant activity and
cytokine production.
Shock.
2000;
13
(Suppl)
579
- 44
Stangl K, Dschietzig T, Alexiou K, Brunner F.
Antithrombin increases pulmonary endothelins: inhibition by heparin and Ca2+ channel
antagonism.
Eur J Pharmacol.
1999;
370
57-61
- 45
Nawroth P P, Stern D M.
Modulation of endothelial cell hemostatic properties by tumor necrosis factor.
J Exp Med.
1986;
163
740-745
- 46
Osterud B, Rapaport S I.
Activation of factor IX by the reaction product of tissue factor and factor VII: additional
pathway for initiating blood coagulation.
Proc Natl Acad Sci USA.
1977;
74
5260-5264
- 47
Zur M, Nemerson Y.
Kinetics of factor IX activation via the extrinsic pathway. Dependence of Km on tissue
factor.
J Biol Chem.
1980;
255
5703-5707
- 48
Zillmann A, Luther T, Muller I. et al .
Platelet-associated tissue factor contributes to the collagen-triggered activation
of blood coagulation.
Bioch Biophys Res Comm.
2001;
281
603-609
- 49
Baeuerle P A, Henkel T.
Function and activation of NF-kappa B in the immune system.
Annu Rev Immunol.
1994;
12
141-179
- 50
Bierhaus A, Zhang Y, Quehenberger P. et al .
The dietary pigment curcumin reduces endothelial tissue factor gene expression by
inhibiting binding of AP-1 to the DNA and activation of NF-kappa B.
Thromb Haemost.
1997;
77
772-782
- 51
Böhrer H, Qiu F, Zimmermann T. et al .
Role of Nf-kappa B in the mortality of sepsis.
J Clin Invest.
1997;
100
972-985
- 52
Okajima K, Wang Y P, Okabe H. et al .
Role of leucacytes in the activation of intravascular coagulation in patients with
septicemia.
Am J Hematol.
1991;
36
265-271
- 53
Lentz S R, Tsiang M, Sadler J E.
Regulation of throm-bomodulin by tumor necrosis factor-alpha: comparison of transcriptional
and posttranscriptional mechanisms.
Blood.
1991;
77
542-550
- 54
Sakata Y, Curriden S, Lawrence D. et al .
Activated protein C stimulates the fibrinolytic activity of cultured endothelial cells
and decreases antiactivator activity.
Proc Natl Acad Sci USA.
1985;
82
1121-1125
- 55
Emerson T E, Fournel M A, Leach W J, Redens T B.
Protection against disseminated intravascular coagulation and death by antithrombin-III
in the Escherichia coli endotoxemic rat.
Circ Shock.
1987;
21
1-13
- 56
Bleeker W K, Agterberg J, Rigter G. et al .
Protective effect of antithrombin III in acute experimental pancreatitis in rats.
Dig Dis Sci.
1992;
37
280-285
- 57
Dickneite G, Paques E P.
Reduction of mortality with antithrombin III in septicemic rats: a study of Klebsiella
pneumoniae induced sepsis.
Thromb Haemost.
1993;
69
98-102
- 58
Kessler C M, Tang Z, Jacobs H M, Szymanski L M.
The suprapharmacologic dosing of antithrombin concentrate for Staphylococcus aureus-induced
disseminated intravascular coagulation in guinea pigs: substantial reduction in mortality
and morbidity.
Blood.
1997;
89
4393-4401
- 59
Dickneite G, Leithauser B.
Influence of antithrombin III on coagulation and inflammation in porcine septic shock.
Arterioscler Thromb Vasc Biol.
1999;
19
1566-1572
- 60
Minnema M C, Chang A C, Jansen P M. et al .
Recombinant human antithrombin III improves survival and attenuates inflammatory responses
in baboons lethally challenged with Escherichia coli.
Blood.
2000;
95
1117-1123
- 61
Taylor F-B J, Emerson-TE T-E J, Jordan R. et al .
Antithrombin-III prevents the lethal effects of Escherichia coli infusion in baboons.
Circ Shock.
1988;
26
227-235
- 62
Triantaphyllopoulos D C.
Effects of human antithrombin III on mortality and blood coagulation induced in rabbits
by endotoxin.
Thromb Haemost.
1984;
51
232-235
- 63
Spannagl M, Hoffmann H, Siebeck M. et al .
A purified antithrombin III-heparin complex as a potent inhibitor of thrombin in porcine
endotoxin shock.
Thromb Res.
1991;
61
1-10
- 64
Hermida J, Montes R, Munoz M C. et al .
Effects of low molecular weight heparin, alone or combined with antithrombin III,
on mortality, fibrin deposits and hemostatic parameters in endotoxin-induced disseminated
intravascular coagulation in rabbits.
Am J Hematol.
1999;
60
6-11
- 65
Mammen E F, Miyakawa T, Phillips T F. et al .
Human antithrombin concentrates and experimental disseminated intravascular coagulation.
Semin Thromb Hemost.
1985;
11
373-383
- 66
Hauptmann J, Bruggener E.
Influence of hirudin on the consumption of antithrombin III in experimental DIC.
Folia Haematol Int Mag Klin Morphol Blutforsch.
1988;
115
83-87
- 67
Gomez C, Paramo J A, Colucci M, Rocha E.
Effect of heparin and/or antithrombin III on the generation of endotoxin-induced plasminogen
activator inhibitor.
Thromb Haemost.
1989;
62
694-698
- 68
Giebler R, Schmidt U, Koch S. et al .
Combined antithrombin III and C1-esterase inhibitor treatment decreases intravascular
fibrin deposition and attenuates cardiorespiratory impairment in rabbits exposed to
Escherichia coli endotoxin.
Crit Care Med.
1999;
27
597-604
- 69
Uchiba M, Okajima K, Murakami K. et al .
Attenuation of endotoxin-induced pulmonary vascular injury by antithrombin III.
Am J Physiol.
1996;
270
L921-930
- 70
Ronneberger H, Hein B.
Wirkung von Antithrombin III auf experimentelle Intoxikationen mit Hepatotoxinen bei
Hunden.
Arzneimittelforschung.
1984;
34
277-279
- 71
Fujiwara K, Ogata I, Ohta Y. et al .
Intravascular coagulation in acute liver failure in rats and its treatment with antithrombin
III.
Gut.
1988;
29
1103-1108
- 72
Uchiba M, Okajima K, Murakami K. et al .
Effects of antithrombin III (AT III) and Trp49-modified AT III on plasma level of
6-keto-PGF1 alpha in rats.
Thromb Res.
1995;
80
201-208
- 73
Harada N, Okajima K, Kushimoto S. et al .
Antithrombin reduces ischemia/reperfusion injury of rat liver by increasing the hepatic
level of prostacyclin.
Blood.
1999;
93
157-164
- 74
Redens T B, Leach W J, Bogdanoff D A, Emerson-TE J.
Synergistic protection from lung damage by combining antithrombin-III and alpha 1-proteinase
inhibitor in the E. coli endotoxemic sheep pulmonary dysfunction model.
Circ Shock.
1988;
26
15-26
- 75
Okada Y, Zuo X J, Marchevsky A M. et al .
Antithrombin III treatment improves parameters of acute inflammation in a highly histoincompatible
model of rat lung allograft rejection.
Transplantation.
1999;
67
526-528
- 76
Ostrovsky L, Woodman R C, Payne D. et al .
Antithrombin III prevents and rapidly reverses leukocyte recruitment in ischemia/reperfusion.
Circulation.
1997;
96
2302-2310
- 77
Lechner K, Niessner H, Thaler E.
Coagulation abnormalities in liver disease.
Semin Thromb Hemost.
1977;
4
40-56
- 78
Knot E, ten-Cate J W, Drijfhout H R. et al .
Antithrombin III metabolism in patients with liver disease.
J Clin Pathol.
1984;
37
523-530
- 79
Tytgat G N, Collen D, Verstraete M.
Metabolism of fibrinogen in cirrhosis of the liver.
J Clin Invest.
1971;
50
169-701
- 80 Verstraete M, Vermylen J, Collen D. Intravascular coagulation in liver disease. Annu
Rev Med Hauptbibl 1974 25
- 81
Schipper H G, ten Cate J W.
Antithrombin III transfusion in patients with hepatic cirrhosis.
Br J Haematol.
1982;
52
25-33
- 82
Coleman M, Finlayson N, Bettigole R E. et al .
Fibrinogen survival in cirrhosis: improvement by „low dose” heparin.
Ann Intern Med.
1975;
83
79-81
- 83
Langley P G, Hughes R D, Forbes A. et al .
Controlled trial of antithrombin III supplementation in fulminant hepatic failure.
J Hepatol.
1993;
17
326-331
- 84
Buller H R, ten-Cate J W.
Antithrombin III infusion in patients undergoing peritoneovenous shunt operation:
failure in the prevention of disseminated intravascular coagulation.
Thromb Haemost.
1983;
49
128-131
- 85
Shimada M, Matsumata T, Kamakura T. et al .
Modulation of coagulation and fibrinolysis in hepatic resection: a randomized prospective
control study using antithrombin III concentrates.
Thromb Res.
1994;
74
105-114
- 86
Palareti G, Legnani C, Maccaferri M. et al .
Coagulation and fibrinolysis in orthotopic liver transplantation: role of the recipient's
disease and use of antithrombin III concentrates. S. Orsola Working Group on Liver
Transplantation.
Haemostasis.
1991;
21
68-76
- 87
Baudo F, DeGasperi A, deCataldo F. et al .
Antithrombin III supplementation during orthotopic liver transplantation in cirrhotic
patients: a randomized trial.
Thromb Res.
1992;
68
409-416
- 88
Christophe J L, Rouget C, Roullier M. et al .
Use of AT-III concentrate during liver transplantation.
Transplant Proc.
1991;
23
1942-1943
- 89
Scherer R, Kabatnik M, Erhard J, Peters J.
The influence of antithrombin III (AT III) substitution to supranormal activities
on systemic procoagulant turnover in patients with end-stage chronic liver disease.
Intensive Care Med.
1997;
23
1150-1158
- 90
Lechner K, Kyrle P A.
Antithrombin III concentrates - are they clinically useful?.
Thromb Haemost.
1995;
73
340-348
- 91
Blauhut B, Necek S, Vinazzer H, Bergmann H.
Substitution therapy with an antithrombin III concentrate in shock and DIC.
Thromb Res.
1982;
27
271-278
- 92
Hellgren M, Javelin L, Hagnevik K, Blomback M.
Antithrombin III concentrate as adjuvant in DIC treatment. A pilot study in 9 severely
ill patients.
Thromb Res.
1984;
35
459-466
- 93
Blauhut B, Kramar H, Vinazzer H, Bergmann H.
Substitution of antithrombin III in shock and DIC: a randomized study.
Thromb Res.
1985;
39
81-89
- 94
Gugliotta L, D'Angelo A, Mattioli B M. et al .
Hypercoagulability during L-asparaginase treatment: the effect of antithrombin III
supplementation in vivo.
Br J Haematol.
1990;
74
465-470
- 95
Harper P L, Williamson L, Park G. et al .
A pilot study of antithrombin replacement in intensive care management: the effects
on mortality, coagulation and renal function.
Transfus Med.
1991;
1
121-128
- 96
Heinemann H, Schramm W, Hoffmann P, Lierz P.
Multiorganversagen nach Gabe von PPSB beim isolierten Faktor VII-Mangel.
Anästh Intensivmed.
1993;
34
130-133
- 97
Hesselvik J F, Blomback M, Brodin B, Maller R.
Coagulation, fibrinolysis, and kallikrein systems in sepsis: relation to outcome.
Crit Care Med.
1989;
17
724-733
- 98
Seitz R, Wolf M, Egbring R, Havemann K.
The disturbance of hemostasis in septic shock: role of neutrophil elastase and thrombin,
effects of antithrombin III and plasma substitution.
Eur J Haematol.
1989;
43
22-28
- 99
Nowak G U, Groll A, Kreuz W D. et al .
Behandlung der Verbrauchskoagulopathie mit Antithrombin III-Konzentrat bei Kindern
mit nachgewiesener Sepsis.
Klin Padiatr.
1992;
204
134-140
- 100
Eisele B, Lamy M, Thijs L G. et al .
Antithrombin III in patients with severe sepsis. A randomized, placebo-controlled,
double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled,
double-blind trials with antithrombin III in severe sepsis.
Intensive Care Med.
1998;
24
663-672
- 101
Baudo F, Caimi T M, deCataldo F. et al .
Antithrombin III (AT III) replacement therapy in patients with sepsis and/or postsurgical
complications: A controlled double-blind, randomized, multicenter study.
Intensive Care Med.
1998;
24
336-342
- 102
Fourrier F, Chopin C, Huart J J. et al .
Double-blind, placebo-controlled trial of antithrombin III concentrates in septic
shock with disseminated intravascular coagulation.
Chest.
1993;
104
882-888
- 103
Inthorn D, Hoffmann J N, Hartl W H. et al .
Antithrombin III supplementation in severe sepsis: beneficial effects on organ dysfunction.
Shock.
1997;
8
328-334
- 104
Inthorn D, Hoffmann J N, Hartl W H. et al .
Effect of antithrombin III supplementation on inflammatory response in patients with
severe sepsis.
Shock.
1998;
10
90-96
- 105
Buller H R, ten-Cate J W.
Antithrombin III infusion in patients undergoing peritoneovenous shunt operation:
failure in the prevention of disseminated intravascular coagulation.
Thromb Haemost.
1983;
49
28-131
- 106
Langley P G, Keays R, Hughes R D. et al .
Antithrombin III supplementation reduces heparin requirement and platelet loss during
hemodialysis of patients with fulminant hepatic failure.
Hepatology.
1981;
14
251-256
- 107
Eisele B, Lamy M, Thijs L G. et al .
Antithrombin III in patients with severe sepsis. A randomized, placebo-controlled,
double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled,
double-blind trials with antithrombin III in severe sepsis.
Intensive Care Med.
1988;
24
663-672
Prof. Dr. med. R. Scherer
Zentrale Abteilung für Anästhesiologie und Intensivmedizin
Evangelische und Johanniter Kliniken Duisburg/Dinslaken/ Oberhausen gGmbH
Fahrner Straße 133 - 135
47169 Duisburg
eMail: ralf.scherer@ejk.de