Subscribe to RSS
DOI: 10.1055/s-2001-17704
Diastereoselective Transformation of Arenes into Highly Enantiomerically Enriched Substituted Cyclohexadienes
Publication History
Publication Date:
10 August 2004 (online)
![](https://www.thieme-connect.de/media/synthesis/200113/lookinside/thumbnails/10.1055-s-2001-17704-1.jpg)
Abstract
Sequential addition of a C-nucleophile and a C-electrophile to enantiomerically pure arene tricarbonyl chromium complexes 3a,b, 6, and 8b, containing aryl bound chiral oxazoline, SAMP-hydrazone and chiral imine auxiliaries affording substituted cyclohexadienes. C-Nucleophiles included alkyl-, vinyl-, and phenyl-lithium reagents. C-Electrophiles included methyl iodide, allyl bromide, benzyl bromide, and propargyl bromides. The 1,3-cylohexadienes were obtained with a 1,5,6-substitution pattern. The results are consistent with a diastereoselective exo-nucleophilic addition to an ortho position of the complexed arene, followed by addition of the electrophile to the metal center. With allyl, ben-zyl, and propargyl groups, direct reductive elimination then yielded trans-5,6-substituted products. With methyl iodide, reductive elimination was preceded by CO insertion and acetyl cyclohexadienes were formed exclusively whose in situ deprotonation/alkylation gave products in which three C-substituents had been added across an arene double bond with complete regio- and stereocontrol. The two path-ways reflect migratory aptitude to carbonylation. An X-ray structure determination of the phenyl oxazoline complex 3a allowed a rationalization of observed diastereoselectivity. Asymmetric induction was very high with the oxazoline and the SAMP-hydrazone complexes (>90% de) whereas the chiral benzaldehyde imine complex 8b afforded the substituted diene aldehydes in moderate enantiomeric purity (34-58% ee). Changing the reaction medium from THF to toluene in reactions with 8b resulted in products of the opposite chirality.
Key words
diastereoselective dearomatization - cyclohexadiene - arene Cr(CO)3 complexes - imine - oxazoline - SAMP-hydrazone
- 1
Makosza M. Russ. Chem. Bull. 1996, 45: 491 - 2
Snieckus V. Chem. Rev. 1990, 90: 879 -
3a
Snieckus V. Pure Appl. Chem. 1994, 66: 2155 -
3b
Hartwig JF. Synlett 1997, 329 -
3c
Wolfe JP.Wagaw S.Marcoux JF.Buchwald S. L. Acc. Chem. Res. 1998, 31: 805 - 4
Bach T. Angew. Chem. Int. Ed. Engl. 1996, 35: 729 -
5a
Semmelhack MF. In Comprehensive Organometallic Chemistry II Vol. 12:Abel EW.Stone FGA.Wilkinson G. Pergamon; New-York: 1995. p.979 -
5b
Pape AR.Kaliappan KP.Kündig EP. Chem Rev. 2000, 100: 2917 - 6
Semmelhack MF.Clark GR.Farina R.Saeman M. J. Am. Chem. Soc. 1979, 101: 217 -
7a
Pearson AJ.Gontcharov AV.Woodgate PD. Tetrahedron Lett. 1996, 37: 3087 -
7b
Pearson AJ.Gontcharov AV. J. Org. Chem. 1998, 63: 152 - 8
Semmelhack MF.Schmalz H.-G. Tetrahedron Lett. 1996, 37: 3089 - 9
Semmelhack MF.Garcia JL.Cortes D.Farina R.Hong R.Carpenter BK. Organometallics 1983, 2: 467 -
10a
Kündig EP.Amurrio D.Liu RG.Ripa A. Synlett 1991, 657 -
10b
Kündig EP.Ripa A.Liu R.Amurrio D.Bernardinelli G. Organometallics 1993, 12: 3724 - 11 For approach 2, see :
Amurrio D.Khan K.Kündig EP. J. Org. Chem. 1996, 61: 2258 - 12 For approach 3, see :
Kündig EP.Quattropani A.Inage M.Ripa A.Dupré C.Cunningham JAF.Bourdin B. Pure Appl. Chem. 1996, 68: 97 - For approach 4, see
-
13a
Schmalz H.-G.Schellhaas K. Angew. Chem. Int. Ed. Engl. 1996, 35: 2146 -
13b
Quattropani A.Anderson G.Bernardinelli G.Kündig EP. J. Am. Chem. Soc. 1997, 119: 4773 -
13c
Schellhaas K.Schmalz H.-G.Bats JW. Chem.- Eur. J. 1998, 4: 57 - Preliminary communications:
-
14a
Kündig EP.Ripa A.Bernardinelli G. Angew. Chem. Int. Ed. Engl. 1992, 31: 1071 -
14b
Kündig EP.Bernardinelli G.Beruben D.Crousse B.Fretzen A.Ratni H.Schnell B.Xu L.-H. Electronic Conference on Heterocyclic Chemistry "98 (Keynote Article 015)Rzepa HS.Kappe O. Imperial College Press; London: 1998. -
14c
Kündig EP.Amurrio D.Anderson G.Beruben D.Khan K.Ripa A.Ronggang L. Pure Appl. Chem. 1997, 543 - 16
Fretzen A.Ripa A.Liu R.Bernardinelli G.Kündig EP. Chem.- Eur. J. 1998, 4: 251 - 17
Kündig EP.Ripa A.Liu RG.Bernardinelli G. J. Org. Chem. 1994, 59: 4773 - 18
McKennon MJ.Meyers AI.Drauz K.Schwarm M. J. Org. Chem. 1993, 58: 3568 - 19
Enders D.Klatt M. Encyclopedia of Reagents for Organic Reactions Vol. 1:Paquette LA. John Wiley & Sons; Chichester: 1995. p.178 - 20
Kündig EP.Perret C.Spichiger S.Bernardinelli G. J. Organomet. Chem. 1985, 286: 183-200 - 21
Gant TG.Meyers AI. Tetrahedron 1994, 50: 2297 - 23
Jackman LM.Scarmoutzos LM. J. Am. Chem. Soc. 1984, 106: 4627 - 24
Kündig EP.Cunningham JAF.Paglia P.Simmons DP.Bernardinelli G. Helv. Chim. Acta 1990, 73: 386 -
27a
Sammakia T.Latham HA.Schaad DR. J. Org. Chem. 1995, 60: 10 -
27b
Nishibayashi Y.Uemura S. Synlett 1995, 79 -
27c
Zhang W.Adachi Y.Hirao T.Ikeda I. Tetrahedron Asymmetr. 1996, 7: 451 - 28
Fretzen A.Kündig EP. Helv. Chim. Acta 1997, 80: 2023 - 30
Pache S.Botuha C.Franz R.Kündig EP.Einhorn J. Helv. Chim Acta 2000, 83: 2436 - 31
Shriver DF.Drezdon MA. The Manipulation of Air-Sensitive Compounds, 2nd ed. John Wiley & Sons; New York: 1986. - 32
Still CW.Kahn M.Mitra A. J. Org. Chem. 1978, 43: 2923 - 33
Gilman H.Cartledge FK. J. Organomet. Chem. 1964, 2: 682 - 34
Rawson DJ.Meyers AI. J. Org.Chem. 1991, 56: 2292 -
35a
Giardina D.Marrazzo A.Marucci G.Piloni MG.Quaglia W. Il Farmaco 1991, 46: 861 -
35b
Kinbara K.Sakai K.Hashimoto Y.Saigo K. Tetrahedron: Asymmetry 1996, 7: 1539 -
36a
Wu M.-J.Pridgen LN. J. Org. Chem. 1991, 56: 1340 -
36b
Pridgen LN.Mokhallalati MK.Wu M.-J. J. Org. Chem. 1992, 57: 1237 -
36c
Higashiyama K.Inoue H.Takahashi H. Tetrahedron Lett. 1992, 33: 235 -
36d
Bernardinelli G.Fernandez D.Gosmini R.Meier P.Ripa A.Schüpfer P.Treptow B.Kündig EP. Chirality 2000, 12: 529 -
37a
Desobry V.Kündig EP. Helv. Chim. Acta 1981, 64: 1288 -
37b
Hudecek M.Gadja V.Toma S. J. Organomet. Chem. 1991, 413: 155 -
37c
Morley JA.Woolsey NF. J. Org. Chem. 1992, 57: 6487 - 38
Davies SG.Goodfellow CL. J. Chem. Soc., Perkin Trans. 1 1990, 393 - 39 See for example:
Perrin DD.Armarego WLF. Purification of Laboratory Chemicals Pergamon Press; Oxford: 1988. 3rd Ed. - 40 For a review on recovery of carbonyl compounds from N,N-dialkyl hydrazones see:
Enders D.Wortmann L.Peters R. Acc. Chem. Res. 2000, 33: 157
References
Diastereoselective meta nucleophile addition/protonation reactions have been carried out with chiral Cr(CO)3 bound aryl ethers. See refs. 7 and 8.
22In the absence of the Cr(CO)3 group, phenyl oxazolines react with n-BuLi to give products arising from ortho-arene lithiation. See ref 21.
25Crystal structure determination of 3a: Cr(CO)3(C12H15NO), Mr = 325.3; µ = 0.782 mm-1, dx = 1.451 g.cm-3, monoclinic, P21, Z = 4, a = 11.0923(10), b = 11.2412(7), c = 12.0144(12)Å, β = 96.471(11)°, V = 1488.5(2)Å3, yellow prism 0.10 x 0.20 x 0.26. Cell dimensions and intensities were measured at 200 K on a Stoe IPDS diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71069 Å). 22868 measured reflections, 7125 unique reflections of which 3728 were observables (|Fo| > 4 σ (Fo)); Rint for equivalent reflections 0.069. Data were corrected for absorption (T min, max = 0.8492, 0.9441). Full-matrix least-squares refinement based on F using weight of 1/[σ2(Fo)+ 0.0003(Fo)2] gave final values R = 0.032, wR2 = 0.032 and Flack parameter x = 0.02(5). Hydrogen atoms were placed in calculated positions.
26Crystallographic data (excluding structure factors) have been deposited to the Cambridge Crystallographic Data Base (deposition No. CCDC163963, CCDC163964 for 3a and 6 respectively). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: Int. + 44(1223)336-033; e-mail: deposit@ccdc.cam.ac.uk).
29Crystal structure determination of 6: Cr(CO)3(C13H18N2O), Mr = 354.3; µ = 0.689 mm-1, dx = 1.415 g.cm-3, monoclinic, P21, Z = 4, a = 10.229(2), b = 13.276(2), c = 12.267(3)Å, β = 92.973(6)°, V = 1663.6(6)Å3, yellow prism 0.11 0.24 0.24. Cell dimensions and intensities were measured at room temperature on a Philips PW1100 diffractometer with graphite-monochromated Mo Kα]radiation (λ = 0.71069 Å). Two reference reflections measured every 60 min showed variation of about 10%; all intensities were corrected for this drift. -10 < h <10; 0 < k < 14; 0 < l < 12 and all anti-reflections; 4522 measured reflections, 4194 unique reflections of which 3155 were observables (|Fo| > 4 σ (Fo)); Rint for equivalent reflections 0.031. Data were corrected for absorption (T min, max = 0.8814, 0.9245). Full-matrix least-squares refinement based on F using weight of 1/[σ2(Fo)+ 0.0003(Fo)2] gave final values R = 0.050, wR2 = 0.047 and Flack parameter x = 0.02(6). Hydrogen atoms were placed in calculated positions. The methoxymethyl substituant of the anti-conformer is disordered. Two disordered fragments have been refined with population parameters of 0.70 and 0.30 for C12b-O1b-C13b and C12b’-O1b’-C13b’ respectively. The partial decomposition of the crystal during data collection and the presence of the disorder, led to relatively large uncertainties in the final coordinates.