Semin Neurol 2001; 21(3): 303-308
DOI: 10.1055/s-2001-17947
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Metabolic Testing in Mitochondrial Disease

Frances E. Dougherty
  • Horizon Molecular Medicine, Norcross, Georgia
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
18. Oktober 2001 (online)

ABSTRACT

Mitochondrial oxidative phosphorylation (OXPHOS) disorders are a heterogeneous group of diseases with variable expression that often pose diagnostic dilemmas. Although definitive diagnosis of these disorders usually requires a muscle biopsy and mtDNA and enzymatic testing, standard metabolic studies including organic acid and amino acid analysis often provide useful findings that support an OXPHOS disease and the need for more invasive studies. In addition, the detection of possible metabolic derangements, such as elevated lactate levels, may lead to improved long-term outcomes for affected patients through the use of various treatment regimens. Similarly, long-term yearly monitoring of diagnosed OXPHOS patients with metabolic testing is also warranted.

REFERENCES

  • 1 Wallace D C. Mitochondrial genes and disease.  Hospital Practice . 1986;  21 77-92
  • 2 Wallace D C. Maternal genes: mitochondrial diseases. Birth Defects Orig Artic Ser .  1987;  23 137-190
  • 3 Wallace D. Mitochondrial DNA mutations and neuromuscular disease.  Trends Genet . 1989;  5 9-13
  • 4 Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S. An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region.  Nature . 1989;  339 309-311
  • 5 Kearns T P, Sayre G P. Retinitis pigmentosa: external ophthalmoplegia and complete heart block.  Arch Ophthalmol . 1958;  60 280-289
  • 6 Pavlakis S G, Phillips P C, DiMauro S, Devivo D C, Rowland L P. Mitochondrial myopathy, lactic acidosis, stroke-like episodes: a distinctive clinical syndrome.  Ann Neurol . 1984;  16 481-488
  • 7 Fukuhara N, Tokiguchi S, Shirakawa S, Tsubaki T. Myoclonus epilepsy associated with ragged red fibers (mitochondrial abnormalities): disease entity or a syndrome?.  <~>Light and electron microscopy studies of two cases and a review of the literature. J Neurol Sci . 1980;  47 117-133
  • 8 Munnich A, Rustin P, Rotig A. Clinical aspects of mitochondrial disorders.  J Inherit Metab Dis . 1992;  15 448-455
  • 9 Tatuch Y, Pagon R A, Vlcek B, Roberts R, Korson M, Robinson B. The 8993 mtDNA mutation: heteroplasmy and clinical presentation in three families.  Eur J Hum Genet . 1994;  2 35-43
  • 10 Trijbels J MF, Scholte H R, Sengers R CA, Janssen A JM, Busch H FM. Problems with the biochemical diagnosis in mitochondrial (enchephalo-) myopathies.  Eur J Pediatr . 1993;  152 178-184
  • 11 Abe K, Fujimura H, Nishikawa Y. Marked reduction in CSF lactate and pyruvate levels after CoQ therapy in a patient with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS).  Acta Neurol Scand . 1991;  83 356-359
  • 12 DeStefano N, Matthew P M, Ford B, Genge A, Karpati G, Arnold D L. Short-term dichloroacetate treatment improves indices of cerebral metabolism in patients with mitochondrial disorders.  Neurology . 1995;  45 1193-1198
  • 13 Bremer J. Carnitine: metabolism and functions.  Physiol Rev . 1983;  63 1420-1480
  • 14 Stumpf D A, Parker W D, Angelini C. Carnitine deficiency, organic acidemias and Reye's syndrome.  Neurology . 1985;  35 1041-1045
  • 15 Rebouche C J, Broquist H P. Carnitine biosynthesis in Neurospora crassa: enzymatic conversion of lysine to alpha-N-trimethyllysine.  J Bacteriol . 1976;  126 1207-1214
  • 16 Rudman D, Ansley J D, Whitaker S C. Carnitine deficiency in cirrhosis. In: Frenkel RA, McGarry JD, eds. Carnitine Biosynthesis, Metabolism and Functions New York: Academic Press 1980: 307-319
  • 17 DiMauro G. Metabolic myopathies. In: Vinken PJ, Bruyn GW, eds. Handbook of Clinical Neurology Amsterdam: Elsevier 1979: 175-234
  • 18 Campos Y, Huertas R, Lorenzo G. Plasma carnitine insufficiency and effectiveness of L-carnitine therapy in patients with mitochondrial myopathy.  Muscle Nerve . 1993;  16 150-153
  • 19 Hsu C C, Chuang Y H, Tsai J L. CPEO and carnitine deficiency overlapping in MELAS syndrome.  Acta Neurol Scand . 1995;  92 252-255
  • 20 Infante J P, Huszagh V A. Secondary carnitine deficiency and impaired docosahexaenoic (22:6n-3) acid deficiency: a common denominator in the pathophysiology of diseases of oxidative phosphorylation and beta-oxidation.  FEBS Lett . 2000;  468 1-5
  • 21 Shoffner J M, Voljavec A S, Dixon J, Kaufman A, Wallace D C, Mitch W E. Renal amino acid transport in adults with oxidative phosphorylation diseases.  Kidney Int . 1995;  47 1101-1107
  • 22 Bennett M J, Powell S, Swartling D J, Gibson K M. Tiglyglycine excreted in urine in disorders of isoleucine metabolism and the respiratory chain measured by stable isotope dilution GC-MS.  Clin Chem . 1994;  40 1879-1883
  • 23 Barshop B A, Nyhan W L, Naviaux R K, McGowan K A, Friedlander M, Haas R H. Kearns-Sayre syndrome presenting as 2-oxoadipic aciduria.  Mol Genet Metab . 2000;  69 64-68
  • 24 Robinson B H, DeMeirleir L, Glerum M, Sherwood G, Becker L. Clinical presentation of patients with mitochondrial respiratory chain defects in NADH coenzyme Q reductase and cytochrome oxidase: clues to the pathogenesis of Leigh Disease.  J Pediatr . 1987;  110 216-222
  • 25 Glerum M, Robinson B H, Spratt C, Wilson J, Patrick D. Abnormal kinetic behaviour of cytochrome oxidase in a case of Leigh's disease.  Am J Hum Genet . 1987;  41 594-603
  • 26 Zheng X X, Shoffner J M, Voljavec A S, Wallace D C. Evaluation procedures for assaying oxidative phosphorylation enzyme activities in mitochondrial myopathy muscle biopsies.  Biochem Biophys Acta . 1990;  1019 1-10
  • 27 Repetto G, Holm I, Dougherty F. Presymptomatic diagnosis of hypoparathyroidism in patients with mitochondrial disease. Seventh International Congress of Inborn Errors of Metabolism. Vienna, Austria, May 21-25, 1997