An peripheren Zellen, in Post-mortem-Gehirnuntersuchungen und mittels der In-vivo-31P-Magnetresonanz-Spektroskopie (MRS) wurde wiederholt eine Beschleunigung des Phospholipidmetabolismus bei schizophrenen Patienten beschrieben. Die Spezifität der Ergebnisse für die Schizophrenie und der Einfluss antipsychotischer Medikation wurde bislang nicht hinreichend untersucht. In der vorliegenden Studie wurde die Zusammensetzung der Membranphospholipide an Thrombozyten bei 67 unbehandelten schizophrenen Patienten im Vergleich zu gesunden und psychiatrischen Kontrollen bestimmt. Bei einer Subgruppe der Patienten wurden die Effekte einer 6-monatigen antipsychotischen Behandlung auf den Phospholipidmetabolismus untersucht. Während bei unbehandelten Patienten die Hauptbestandteile der Membranphospholipide, Phosphatidylcholin und Phosphatidylethanolamin im Vergleich zu den Kontrollen erniedrigt und deren durch Aktivität der Phospholipase A2 entstandenes Abbauprodukt Lysophosphatidylcholin (LPC) erhöht war, sank LPC während einer 3-wöchigen, standardisierten Haloperidol-Therapie signifikant ab. Im Langzeitverlauf, bei Verwendung klassischer und atypischer Antipsychotika finden sich divergente Effekte. So blieb LPC unter kontinuierlicher Therapie mit typischen Neuroleptika weiterhin erniedrigt, während es bei denjenigen Patienten, die auf das Atypikum Zotepin umgestellt wurden, zu einem Anstieg von LPC kam. Unterschiedliche Wirkungen verschiedener Substanzklassen der Antipsychotika auf den Phospholipidmetabolismus können möglicherweise die divergenten Befunde der 31P-MRS bei medizierten schizophrenen Patienten erklären.
Abstract
To date numerous in-vivo 31P-MRS and in-vitro studies in schizophrenic patients have been able to demonstrate changes in their membrane phospholipid metabolism, which might be relevant for the cause and the therapeutic responsiveness of this disorder. Thus far, however, only limited studies exist regarding the specificity of these findings for schizophrenia and the effect of antipsychotic medication. The present study examined the composition of membrane phospholipids in platelets of 67 neuroleptic-free schizophrenic patients compared to healthy and psychiatric controls. In a subsample of the schizophrenic patients we determined the effect of antipsychotic treatment on the phospholipid metabolism during six-months follow up. While untreated patients showed a decrease in major membrane phospholipid components, i.e. phosphatidylcholine and phosphatidylethanolamine, when compared to control subjects, as well as an increase in their breakdown-product lysophosphatidylcholine (LPC), there was a significant reduction in LPC during three weeks of pharmacotherapy with haloperidol. After six months treatment with different antipsychotics some divergent effects on phospholipid metabolism in schizophrenic patients could be demonstrated. While in the long-term course LPC remained decreased under continuous therapy with typical neuroleptics, patients being treated with the atypical drug zotepine showed an increase in LPC compared to their baseline level before therapy. Thus, specific mechanisms of the different antipsychotic therapies on phospholipid metabolism might serve to explain the divergent findings of 31P-MRS in medicated patients.
Literatur
1
Pettegrew J W, Keshavan M S, Minshew N J.
31P nuclear magnetic resonance spectroscopy: neurodevelopment and schizophrenia.
Schizophr Bull.
1993;
19
35-53
3
Keshavan M S, Stanley J A, Pettegrew J W.
Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings - part II.
Biol Psychiatry.
2000;
48
369-380
4
Stanley J A, Williamson P C, Drost D J, Carr T J, Rylett R J, Malla A, Thompson R T.
An in vivo study of the prefrontal cortex of schizophrenic patients at different stages of illness via phosphorus magnetic resonance spectroscopy.
Arch Gen Psychiatry.
1995;
52
399-406
5
Fukuzako H, Fukuzako T, Hashiguchi T, Kodama S, Takigawa M, Fujimoto T.
Changes in levels of phosphorus metabolites in temporal lobes of drug-naive schizophrenic patients.
Am J Psychiatry.
1999;
156
1205-1208
6
Volz H P, Rossger G, Riehemann S, Hubner G, Maurer I, Wenda B, Rzanny R, Kaiser W A, Sauer H.
Increase of phosphodiesters during neuroleptic treatment of schizophrenics: a longitudinal 31P-magnetic resonance spectroscopic study.
Biol Psychiatry.
1999;
45
1221-1225
7
Volz H R, Riehemann S, Maurer I, Smesny S, Sommer M, Rzanny R, Holstein W, Czekalla J, Sauer H.
Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a (31)P chemical shift spectroscopic-imaging study.
Biol Psychiatry.
2000;
47
954-961
8
Keshavan M S, Pettegrew J W, Panchalingam K, Kaplan D.
In vivo 31P NMR spectroscopy of the frontal lobe metabolism in neuroleptic naive first episode psychoses.
Schizophr Res.
1989;
1
122
9
Deicken R F, Calabrese G, Merrin E L, Meyerhoff D J, Dillon W P, Weiner M W, Fein G.
31Phosphorus magnetic resonance spectroscopy of the frontal and parietal lobes in chronic schizophrenia.
Biol Psychiatry.
1994;
36
503-510
10
Stanley J A, Williamson P C, Drost D J, Carr T J, Rylett R J, Morrison-Stewart S, Thompson R T.
Membrane phospholipid metabolism and schizophrenia: an in vivo 31P-MR spectroscopy study.
Schizophr Res.
1994;
13
209-215
11
Volz H P, Gaser C, Hager F, Rzanny R, Mentzel H J, Kreitschmann-Andermahr I, Kaiser W A, Sauer H.
Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test - a functional MRI study on healthy volunteers and schizophrenics.
Psychiatry Res.
1997;
75
145-157
12
Volz H P, Hubner G, Rzanny R, Rossger G, Preussler B, Eichhorn M, Kreitschmann-Andermahr I, Kaiser W A, Sauer H.
High-energy phosphates in the frontal lobe correlate with Wisconsin Card Sort Test performance in controls, not in schizophrenics: a 31phosphorus magnetic resonance spectroscopic and neuropsychological investigation.
Schizophr Res.
1998;
31
37-47
13
Potwarka J J, Drost D J, Williamson P C, Carr T, Canaran G, Rylett W J, Neufeld R W.
A 1H-decoupled 31P chemical shift imaging study of medicated schizophrenic patients and healthy controls.
Biol Psychiatry.
1999;
45
687-693
14
Fujimoto T, Nakano T, Takano T, Hokazono Y, Asakura T, Tsuji T.
Study of chronic schizophrenics using 31P magnetic resonance chemical shift imaging.
Acta Psychiatr Scand.
1992;
86
455-462
15
Fukuzako H, Fukuzako T, Takeuchi K, Ohbo Y, Ueyama K, Takigawa M, Fujimoto T.
Phosphorus magnetic resonance spectroscopy in schizophrenia: correlation between membrane phospholipid metabolism in the temporal lobe and positive symptoms.
Prog Neuropsychopharmacol Biol Psychiatry.
1996;
20
629-640
18 Rotrosen J, Wolkin A. Phospholipid and prostaglandin hypotheses of schizophrenia. In: Meltzer HY (Hrsg.). Psychopharmacology: The third generation of progress. New York: Raven Press 1987: 759-764
19
Pangerl A M, Steudle A, Jaroni H W, Rufer R, Gattaz W F.
Increased platelet membrane lysophosphatidylcholine in schizophrenia.
Biol Psychiatry.
1991;
30
837-840
22
Smesny S, Volz H P, Riehemann S, Sauer H.
Störungen im Phospholipidmetabolismus als mögliche pathogenetische Faktoren der Schizophrenie.
Fortschr Neurol Psychiatr.
2000;
68
301-312
23
Noponen M, Sanfilipo M, Samanich K, Ryer H, Ko G, Angrist B, Wolkin A, Duncan E, Rotrosen J.
Elevated PLA2 activity in schizophrenics and other psychiatric patients.
Biol Psychiatry.
1993;
34
641-649
24
Ross B M, Hudson C, Erlich J, Warsh J J, Kish S J.
Increased phospholipid breakdown in schizophrenia. Evidence for the involvement of a calcium-independent phospholipase A2.
Arch Gen Psychiatry.
1997;
54
487-494
25
Gattaz W F, Brunner J, Schmitt A, Maras A.
Beschleunigter Abbau von Membranphospholipiden bei der Schizophrenie - Implikationen für die Hypofrontalitätshypothese.
Fortschr Neurol Psychiatr.
1994;
62
489-496
26
Mombour W, Kockott G, Fliege K.
The use of the brief psychiatric rating scale (BPRS) by overall and gorham for the diagnosis of acute paranoid psychoses: evaluation of a german translation of the BPRS.
Pharmakopsychiatr Neuropsychopharmakol.
1975;
8
279-288
27
Biehl H, Maurer K, Jung E, Krumm B.
The WHO Psychological Impairments Rating Schedule (WHO/PIRS). II. Impairments in Schizophrenics in cross-sectional and longitudinal perspective - the Mannheim experience in two independent samples.
Br J Psychiatry.
1989;
Suppl
71-77
28
Biehl H, Maurer K, Jablensky A, Cooper J E, Tomov T.
The WHO Psychological Impairments Rating Schedule (WHO/PIRS). I. Introducing a new instrument for rating observed behaviour and the rationale of the psychological impairment concept.
Br J Psychiatry.
1989;
Suppl
68-70
30
Ishigooka J, Shizu Y, Wakatabe H, Tanaka K, Miura S.
Different effects of centrally acting drugs on rabbit platelet aggregation: with special reference to selective inhibitory effects of antipsychotics and antidepressants.
Biol Psychiatry.
1985;
20
866-873
32
Essali M A, Das I, de Belleroche J, Hirsch S R.
The platelet polyphosphoinositide system in schizophrenia: the effects of neuroleptic treatment.
Biol Psychiatry.
1990;
28
475-487
33
Hudson C J, Lin A, Horrobin D F.
Phospholipases: in search of a genetic base of schizophrenia.
Prostaglandins Leukot Essent Fatty Acids.
1996;
55
119-122
34
Hudson C, Gotowiec A, Seeman M, Warsh J, Ross B M.
Clinical subtyping reveals significant differences in calcium-dependent phospholipase A2 activity in schizophrenia.
Biol Psychiatry.
1999;
46
401-405
35
Ross B M, Turenne S, Moszczynska A, Warsh J J, Kish S J.
Differential alteration of phospholipase A2 activities in brain of patients with schizophrenia.
Brain Res.
1999;
821
407-413
37
Trzeciak H I, Kalacinski W, Malecki A, Kokot D.
Effect of neuroleptics on phospholipase A2 activity in the brain of rats.
Eur Arch Psychiatry Clin Neurosci.
1995;
245
179-182
38
Kornhuber J, Schultz A, Wiltfang J, Meineke I, Gleiter C H, Zochling R, Boissl K W, Leblhuber F, Riederer P.
Persistence of haloperidol in human brain tissue.
Am J Psychiatry.
1999;
156
885-890
39
Pettegrew J W, Keshavan M S, Panchalingam K, Strychor S, Kaplan D B, Tretta M G, Allen M.
Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy.
Arch Gen Psychiatry.
1991;
48
563-568
40
Williamson P, Drost D, Stanley J, Carr T, Morrison S, Merskey H.
Localized phosphorus 31 magnetic resonance spectroscopy in chronic schizophrenic patients and normal controls.
Arch Gen Psychiatry.
1991;
48
578
41
Shioiri T, Kato T, Inubushi T, Murashita J, Takahashi S.
Correlations of phosphomonoesters measured by phosphorus-31 magnetic resonance spectroscopy in the frontal lobes and negative symptoms in schizophrenia.
Psychiatry Res.
1994;
55
223-235
42
Kato T, Shioiri T, Murashita J, Hamakawa H, Takahashi Y, Inubushi T, Takahashi S.
Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase- encoded 31P-MRS.
Psychol Med.
1995;
25
557-566
43
Hinsberger A D, Williamson P C, Carr T J, Stanley J A, Drost D J, Densmore M, MacFabe G C, Montemurro D G.
Magnetic resonance imaging volumetric and phosphorus 31 magnetic resonance spectroscopy measurements in schizophrenia.
J Psychiatry Neurosci.
1997;
22
111-117
44
Shioiri T, Hamakawa H, Kato T, Fujii K, Murashita J, Inubishi T, Someya T.
Frontal lobe membrane phospholipid metabolism and ventricle to brain ratio in schizophrenia: preliminary 31P-MRS and CT studies.
European archiveness of Psychiatry and clinical neuroscience.
2000;
250
169-174
45
O’Callaghan E, Redmond O, Ennis R, Stack J, Kinsella A, Ennis J T, Larkin C, Waddington J L.
Initial investigation of the left temporoparietal region in schizophrenia by 31P magnetic resonance spectroscopy.
Biol Psychiatry.
1991;
29
1149-1152
46
Calabrese G, Deicken R F, Fein G, Merrin E L, Schoenfeld F, Weiner M W.
31Phosphorus magnetic resonance spectroscopy of the temporal lobes in schizophrenia.
Biol Psychiatry.
1992;
32
26-32
47
Deicken R F, Calabrese G, Merrin E L, Vinogradov S, Fein G, Weiner M W.
Asymmetry of temporal lobe phosphorous metabolism in schizophrenia: a 31phosphorous magnetic resonance spectroscopic imaging study.
Biol Psychiatry.
1995;
38
279-286
48
Deicken R F, Calabrese G, Merrin E L, Fein G, Weiner M W.
Basal ganglia phosphorous metabolism in chronic schizophrenia.
Am J Psychiatry.
1995;
152
126-129
49
Bluml S, Tan J, Harris K, Adatia N, Karme A, Sproull T, Ross B.
Quantitative proton-decoupled 31P MRS of the schizophrenic brain in vivo.
J Comput Assist Tomogr.
1999;
23
272-275