Facial Plast Surg 2001; 17(4): 279-282
DOI: 10.1055/s-2001-18823
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Future Management of Scarring

John M. Schweinfurth
  • Department of Otolaryngology, Penn State University, Milton S. Hershey Medical Center, Hershey, PA
Further Information

Publication History

Publication Date:
05 December 2001 (online)

ABSTRACT

Future growth and development of plastic and reconstructive surgery will push forward on all fronts, from the prevention of injury to improvements in primary and secondary wound closure, healing, surgical planning, instrumentation, and techniques. Current technology is on the brink of promoting rapid healing and preventing scar formation at the cellular level by affecting the healing process. Tissue engineering has the potential of creating new tissue with the potential to closely approximate missing or damaged tissue from a biopsy of the original. The next generation of reconstructive surgeons may approach traumatic wounds in a completely different fashion, with computers, growth factors, and cell cultures as opposed to a scalpel and suture.

REFERENCES

  • 1 Marcus J R, Tyrone J W, Bonomo S, Xia Y, Mustoe T A. Cellular mechanisms for diminished scarring with aging.  Plast Reconstr Surg . 2000;  105 1591-1599
  • 2 Steed D. Clinical evaluation of recombinant human platelet derived growth factor for the treatment of lower extremity diabteic ulcers.  J Vasc Surg . 1995;  21 71-78
  • 3 Livant D L. The PHSRN sequence induces extracellular matrix invasion and accelerates wound healing in obese diabetic mice.  J Clin Invest . 2000;  105 1537-1545
  • 4 Wang X, Smith P, Pu L L, Kim Y J, Ko F, Robson M C. Exogenous transforming growth factor beta2 modulates collagen I and collagen III synthesis in proliferative scar xenografts in nude rats.  J Surg Res . 1999;  87 194-200
  • 5 DaCosta R M, Jesus F M, Aniceto C, Mendes M. Randomized, double-blinded, placebo-controlled, dose-ranging study of granulocyte-macrophage colony stimulating factor in patients with chronic venous leg ulcers.  Wound Repair Regen . 1991;  7 17-25
  • 6 Galiano R D, Zhao L L, Clemmons D R, Roth S I, Lin X, Mustoe T A. Interaction between the insulin-like growth factor family and the integrin receptor family in tissue repair processes: evidence in a rabbit ear dermal ulcer model.  J Clin Invest . 1996;  98 2462-2468
  • 7 Xia Y, Zhao Y, Marcus J R, Jiminez P, Mustoe T A. Effect of keratinocyte growth factor-2 on wound healing in ischemia-impaired wound healing animal model and scar formation.  J Pathol . 1999;  188 431-438
  • 8 Ovington L G. Dressings and adjunctive therapies: AHCPR guidelines revisited.  Ostomy/Wound Manage . 1999;  45(suppl 1A) 94-106
  • 9 Ronfard V, Rives J M, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix.  Transplantation . 2000;  70 1588-1598
  • 10 Falanga V, Margolis D, Alvarez O. Rapid healing of venous stasis ulcers and lack of clinical rejection with an allogenic cultured human skin equivalent: human skin equivalent investigators group.  Arch Dermatol . 1998;  134 293-300
  • 11 Rodriguez A, Cao Y L, Ibarra C. Characteristics of cartilage engineered from human pediatric auricular cartilage.  Plast Reconstr Surg . 1999;  103 1111-1119