Abstract
Acylation and sulfonylation reactions catalyzed by bismuth(III) chloride or triflate are reviewed. For Friedel-Crafts reactions the mechanistic study reveals the different behavior of Bi(OTf)3, depending on the electrophilic agent used; either that of Lewis acid (with acid anhydrides) or that of procatalyst, carrier of triflate groups (with acid chlorides), leading to in situ generation of mixed anhydrides (RCOOTf or RSO2OTf) responsible for the aromatic electrophilic substitution. Among the metal triflates tested in these reactions, only Ga(III) and In(III) exhibit high activity. Bi(OTf)3 appears to be superior to other metal triflates known to catalyze the acylation of alcohols using acid anhydrides as reagents. BiCl3, especially in the presence of a metal iodide, is the only known efficient catalyst for acyldesilylation reactions of allyl- and enoxysilanes. The low cost of bismuth compounds and their low (or absence of) toxicity are emphasized.
-
1 Introduction
-
2 Acylation of Aromatics
-
2.1 Bi(III) Chloride as Catalyst
-
2.1.1 Mechanistic Aspects
-
2.2 Bismuth(III) Triflate as Catalyst
-
2.2.1 Literature Survey of Triflates Used as Catalysts of Friedel-Crafts Acylation
-
2.2.2 Bismuth(III) Triflate as Catalyst. Results
-
2.2.3 Mechanistic Aspects
-
2.2.4 Comparison of the Catalytic Activities of Bi(OTf)3 and Other Metal Triflates
-
3 Sulfonylation of Aromatics
-
3.1 Bismuth(III) Chloride as Catalyst
-
3.2 Bismuth(III) Triflate as Catalyst
-
3.3 Mechanistic Aspects
-
4 Acyldesilylation of Organosilanes
-
4.1 Acyldesilylation of Allylsilanes
-
4.2 Acyldesilylation of Enoxysilanes
-
5 Acylation of Alcohols
-
6 Conclusion
Key words
acylation - alcohols - allylsilanes - bismuth(III) chloride - bismuth(III) trifluoromethanesulfonate - enoxysilanes - Friedel-Crafts - Lewis acids - sulfonylation
References
1a
Irwing-Sax N.
Bewis RJ.
Dangerous Properties of Industrial Materials
Van Nostran Reinhold;
New York:
1989.
p.283-284
1b
Irwing-Sax N.
Bewis RJ.
Dangerous Properties of Industrial Materials
Van Nostran Reinhold;
New York:
1989.
p.522-523
2
Wormser U.
Nir I. In
The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds
Patai S.
Wiley;
New York:
1994.
p.715-723
3
Dill K.
McGown EL. In
The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds
S .
Wiley;
New York:
1994.
p.695-713
4a
Maeda S. In
The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds
Patai S.
Wiley;
New York:
1994.
p.725-759
4b
Reglinski J. In
Chemistry of Arsenic, Antimony and Bismuth
Chap. 8:
Norman NC.
Blackie Academic and Professional;
London:
1998.
p.403-440
5a
Godfrey SM.
McAuliffe CA.
Mackie AG.
Pritchard RG. In
Chemistry of Arsenic, Antimony and Bismuth
Chap. 3:
Norman NC.
Blackie Academic and Professional;
London:
1998.
p.67-158
5b
Suzuki H.
Matano Y. In
Chemistry of Arsenic, Antimony and Bismuth
Chap. 6:
Norman NC.
Blackie Academic and Professional;
London:
1998.
p.283-343
6a
Carapella SC.
Howe HE. In
Encyclopedia of Chemical Technology
3rd ed., Vol. 3:
Wiley;
New York:
1978.
p.912-921
6b
Krüger J.
Winkler P.
Lüderitz E.
Lück M. In
Ullman’s Encyclopedia of Industrial Chemistry
Vol. A4:
Gerhartz WE.
VCH;
Weinheim:
1985.
p.171-189
6c
Polmear IJ. In
Chemistry of Arsenic, Antimony and Bismuth
Chap. 2:
Norman NC.
Blackie Academic and Professional;
London:
1998.
p.39-65
7a
Ohara T.
Sato T.
Shimizu N. In
Ullman’s Encyclopedia of Industrial Chemistry
Vol. A1:
Gerhartz W.
VCH;
Weinheim:
1985.
p.149-160
7b
Langvardt PW. In
Ullman’s Encyclopedia of Industrial Chemistry
Vol. A1:
Gerhartz W.
VCH;
Weinheim:
1985.
p.177-184
8a
Huang Y.-Z.
Zhou Z.-L. In
Comprehensive Organometallic Chemistry
Vol. 11:
Abel EW.
Stone FGA.
Wilkinson G.
Pergamon;
New York:
1995.
p.502-513
8b
Suzuki H.
Ikegami T.
Matano Y.
Synthesis
1997,
249
8c
Marshall JA.
Chemtracts
1997,
10:
1064
8d
Komatsu N. In Organobismuth Chemistry
Suzuki H.
Matano Y. Elsevier;
Amsterdam:
2001.
p.371-440
9a
Barton DHR.
Pure and Appl. Chem.
1987,
59:
937
9b
Finet JP.
Chem. Rev.
1989,
89:
1487
9c
Matano Y.
Suzuki H.
Bull. Chem. Soc. Jpn
1996,
69:
2673 ; and references therein
10a
Suzuki H.
Ikegami T.
Matano Y.
Synthesis
1997,
251 ; and references cited therein
10b
Tymonko SA.
Nattier BA.
Mohan RS.
Tetrahedron Lett.
1999,
40:
7657
10c
Coin C.
Le Boisselier V.
Favier I.
Postel M.
Dunach E.
Eur. J. Org. Chem.
2001,
735
10d
Eash KJ.
Pulia MS.
Wieland LC.
Mohan RS.
J. Org. Chem.
2000,
65:
8399
10e
Nattier BA.
Eash KJ.
Mohan RS.
Synthesis
2001,
1010
10f
Anderson AM.
Blazek JM.
Garg P.
Payne BJ.
Mohan RS.
Tetrahedron Lett.
2000,
41:
1527
10g
Mohammadpoor-Baltork I.
Tangestaninejad S.
Aliyan H.
Mirkhani V.
Synth. Commun.
2000,
30:
2365
10h
Oussaid A.
Boukherroub R.
Déjean V.
Garrigues B.
Phosphorus, Sulfur and Silicon
2000,
167:
81
10i Bassett MR, Bedard TC, Christensen SP, Keen BT, and Sleadd BA. inventors; US Patent Application 343767.
; Chem. Abstr. 2001, 134, 71304y
10j
Labrouillère M.
Le Roux C.
Gaspard-Iloughmane H.
Dubac J.
Synlett
1994,
723
10k
Labrouillère M.
Le Roux C.
Oussaid A.
Gaspard-Iloughmane H.
Dubac J.
Bull. Soc. Chim. Fr.
1995,
132:
522
10l
Montero JL.
Winum JY.
Leydet A.
Kamal M.
Pavia AA.
Roque JP.
Carbohydr. Res.
1997,
297:
175
10m
Winum JY.
Kamal M.
Barragan V.
Leydet A.
Montero JL.
Synth. Commun.
1998,
603
10n
Oussaid A.
Garrigues P.
Garrigues B.
C. R. Acad. Sci.
2001,
691
11a
Wada M.
Takeichi E.
Matsumoto T.
Bull. Chem. Soc. Jpn.
1991,
69:
990
11b
Le Roux C.
Gaspard-Iloughmane H.
Dubac J.
Jaud J.
Vignaux P.
J. Org. Chem.
1993,
58:
1835
11c
Le Roux C.
Gaspard-Iloughmane H.
Dubac J.
Bull. Soc. Chim. Fr.
1993,
130:
832
11d
Le Roux C.
Gaspard-Iloughmane H.
Dubac J.
J. Org. Chem.
1994,
59:
2238
12
Peidro L.
Le Roux C.
Laporterie A.
Dubac J.
J. Organomet. Chem.
1996,
521:
397
13a
Garrigues B.
Gonzaga F.
Robert H.
Dubac J.
J. Org. Chem.
1997,
62:
4880
13b
Robert H.
Garrigues B.
Dubac J.
Tetrahedron Lett.
1998,
39:
1161
13c
Laurent-Robert H.
Le Roux C.
Dubac J.
Synlett
1998,
1138
13d
Motorina IA.
Grierson DS.
Tetrahedron Lett.
1999,
40:
7215
13e
Laurent-Robert H.
Garrigues B.
Dubac J.
Synlett
2000,
1160
13f
Laurent-Robert H.
Garrigues B.
Dubac J.
Synlett
2001,
564
14
Torisawa Y.
Nishe T.
Minamikawa J.-i.
Org. Process Res. Dev.
2001,
5:
84 ; Chem. Abstr. 2001, 134, 85980c
15a
Lange KCH.
Klapötke TM. In
The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds
Patai S.
J. Wiley;
New York:
1994.
p.315-366
15b
Godfrey SM.
McAuliffe CA.
Mackie AG.
Pritchard RG. In
Chemistry of Arsenic, Antimony and Bismuth
Chap. 4:
Norman NC.
Blackie Academic and Professional;
London:
1998.
p.159-205
15c
Whitmire KH. In
Chemistry of Arsenic, Antimony and Bismuth
Chap. 7:
Norman NC.
Blackie Academic and Professional;
London:
1998.
p.345-402
16a
Reed AE.
Schleyer PR.
J. Am. Chem. Soc.
1990,
112:
1434
16b
Carmalt CJ.
Norman NC. In
Chemistry of Arsenic, Antimony and Bismuth
Chap. 1:
Norman NC.
Blackie Academic and Professional;
London:
1998.
p.1-38
17a
Pearson RG.
J. Am. Chem. Soc.
1963,
85:
3533
17b
Pearson RG.
Science
1966,
151:
172
18a
March J.
Advanced Organic Chemistry. Reactions, Mechanisms, and Structure
4th ed.:
Wiley;
New York:
1992.
p.487-495
18b
March J.
Advanced Organic Chemistry. Reactions, Mechanisms, and Structure
4th ed.:
Wiley;
New York:
1992.
p.530
18c
March J.
Advanced Organic Chemistry. Reactions, Mechanisms, and Structure
4th ed.:
Wiley;
New York:
1992.
p.539-542
18d
March J.
Advanced Organic Chemistry. Reactions, Mechanisms, and Structure
4th ed.:
Wiley;
New York:
1992.
p.598-600
18e
Larock RC.
Comprehensive Organic Transformations
VCH;
Weinheim:
1989.
p.681-719
19a
Fleming I.
Dunoguès J.
Smithers R.
Organic Reactions
1989,
37:
57
19b
Fleming I.
Dunoguès J.
Smithers R.
Organic Reactions
1989,
37:
148-154
19c
Fleming I.
Dunoguès J.
Smithers R.
Organic Reactions
1989,
37:
446-474
19d
Benneteau B.
Dunoguès J.
Synlett
1993,
171
Reviews about the FC acylation:
20a Olah G. A.; Friedel-Crafts and Related Reactions; Wiley-Interscience: New York, 1963-1965;Vol. I-IV:
20b
Olah GA.
Friedel-Crafts Chemistry
Wiley-Interscience;
New York:
1973.
20c
Pearson DE.
Buehler CA.
Synthesis
1972,
533
20d
Heaney H. In
Comprehensive Organic Synthesis
Vol. 2, Chap. 3.2: Trost BM. Pergamon Press; Oxford:
1991. p.733-752
20e
Taylor R.
Electrophilic Aromatic Substitution
Chap. 6: Wiley-Interscience; Chichester:
1990. p.222-238
20f
Scheele JJ.
Ph.D. Thesis
Tech. Hogesh, Delft;
The Netherlands:
1991.
20g
Olah GA.
Reddy VP.
Prakash GKS. In
Encyclopedia of Chemical Technology
4 th ed., Vol. 11:
Wiley;
New York:
1994.
p.1042-1081
20h
Mahato SB.
J. Indian Chem. Soc.
2000,
77:
175
21a
Ashforth R.
Desmurs J.-R.
Ind. Chem. Libr.
1996,
8
21b
The Roots of Organic Development
Desmurs J.-R.
Ratton S.
Elsevier;
Amsterdam:
1996.
p.3-14
22
Dermer OC.
Wilson DM.
Johnson FM.
Dermer VH.
J. Am. Chem. Soc.
1941,
63:
2881
23
Scheele JJ.
Ph.D. Thesis
Chap. 2:
Tech. Hogesh, Delft;
The Netherlands:
1991.
p.35-45
24
Tsukervanik IP.
Veber NV.
Dokl. Akad. Nauk SSSR
1968,
180:
892
25
Suzuki K.
Kitagawa H.
Mukaiyama T.
Bull. Soc. Chem. Jpn
1993,
66:
3729
26a
Desmurs J.-R.
Labrouillère M.
Dubac J.
Laporterie A.
Gaspard H.
Metz F.
Ind. Chem. Libr.
1996,
8
26b
The Roots of Organic Development
Desmurs J.-R.
Ratton S.
Elsevier;
Amsterdam:
1996.
p.15-28
26c
Labrouillère M.
Thesis
Université Paul-Sabatier;
France:
1995.
26d Dubac J, Labrouillère M, Laporterie A, and Desmurs J.-R. inventors; Eur. Pat., Appl. EP, 698593.
; Chem. Abstr. 1996, 124, 316758y
26e
Typical Procedure for the Benzoylation of Anisole: In a 250 mL flask were introduced anisole (21.63 g; 0.2 mol), benzoyl chloride (14.56 g; 0.1 mol) and bismuth chloride (3.15 g; 0.01 mol). The flask, equipped with a condenser, was heated in a thermostated oil bath at 80 °C for 6 h. After the mixture was cooled, GC analysis of crude product using tetradecane as internal standard indicated that methoxybenzophenone(1) had formed in quantitative yield (with respect to PhCOCl). Dichloromethane (60 mL) and 6% aqueous HCl (60 mL) were added to the crude mixture. The combined organic phases were dried over magnesium sulfate and concentrated. The product was purified by flash chromatography (silica gel; eluent: pentane/ether = 9:1) to afford ketone 1 (19.10 g; 90% yield). The ratio of isomers was determined by GC analysis: o-/m-/p-1 = 8:trace:92. The recovery of bismuth was effected from the aqueous phase through the medium of the oxychloride. A NaOH (2 M) aqueous solution was added to the aqueous acid phase up to the neutralization and formation of a white precipitate of BiOCl. This solid was filtered and oven-dried for 5 h. Mass of BiOCl obtained: 2.59 g (99.5% recovery of bismuth).
27
Hansch C.
Leo A.
Taft R.
Chem. Rev.
1991,
91:
165
28a
Cornélis A.
Gerstmans A.
Laszlo P.
Mathy A.
Zieba I.
Catal. Lett.
1990,
6:
103
28b
Cornélis A.
Laszlo P.
Wang S.
Tetrahedron Lett.
1993,
34:
3849
For a study of byproducts in FC acylation in the presence of metallic chlorides, see:
29a
Scheele JJ.
Ph.D. Thesis
Chap. 1:
Tech. Hogesh, Delft;
The Netherlands:
1991.
p.24-25
29b
Scheele JJ.
Ph.D. Thesis
Chap. 3:
Tech. Hogesh, Delft;
The Netherlands:
1991.
p.47-68
30a
Laporte C.
Marquié J.
Laporterie A.
Desmurs J.-R.
Dubac J.
C. R. Acad. Sci.
1999,
II c:
455
30b
Marquié J.
Laporte C.
Laporterie A.
Dubac J.
Desmurs J.-R.
Roques N.
Ind. Eng. Chem. Res.
2000,
39:
1124
31
Scheele JJ.
Ph.D. Thesis
Chap. 6:
Tech. Hogesh, Delft;
The Netherlands:
1991.
p.115-145
32
Paul RC.
Singh D.
Saandhu SS.
J. Chem. Soc.
1959,
319
33a
Olah GA.
Germain A.
White AM. In
Carbonium Ions
Chap. 35:
Olah GA.
Schleyer PR.
Wiley;
New York:
1976.
33b
Germain A.
Commeyras A.
Casadevall A.
Bull. Soc. Chim. Fr.
1972,
3177
34
Chevrier B.
Weiss R.
Angew. Chem. Int. Ed. Engl.
1974,
13:
1
35
Murafuji T.
Mutoh T.
Satoh K.
Tsunenari K.
Azuma N.
Suzuki H.
Organometallics
1995,
14:
3848
36a
Olah GA.
Friedel-Crafts and Related Reactions
Part 2, Vol. III:
Wiley-Interscience;
New York:
1963-1965.
p.1004-1012
36b
Scheele JJ.
Ph.D. Thesis
Chap. 1:
Tech. Hogesh, Delft;
Netherlands:
1991.
p.14-21 ; and references therein
37
Scheele JJ.
Ph.D. Thesis
Chap. 1:
Tech. Hogesh, Delft;
Netherlands:
1991.
p.21-23 ; and references therein
38
Frank W.
Schneider J.
Müller-Becker S.
Chem. Commun.
1993,
799 ; and references therein.
39
Haszeldine RN.
Kidd JM.
J. Chem. Soc.
1954,
4228
40a
Germain A.
Commeyras A.
Casadevall A.
Bull. Soc. Chim. Fr.
1973,
2527
40b
Germain A.
Commeyras A.
Casadevall A.
Bull. Soc. Chim. Fr.
1973,
2537
40c
Effenberger F.
Angew. Chem. Int. Ed. Engl.
1980,
19:
151
40d
Effenberger F.
Eberhard JK.
Maier AH.
J. Am. Chem. Soc.
1996,
118:
1257 ; and references therein
41a
Effenberger F.
Epple G.
Angew. Chem. Int. Ed. Engl.
1972,
11:
299
41b
Effenberger F.
Sohn E.
Epple G.
Chem. Ber.
1983,
116:
1195
41c
Effenberger F.
Epple G.
Eberhard JK.
Bühler U.
Sohn E.
Chem. Ber.
1983,
116:
1183
42a
Effenberger F.
Epple G.
Angew. Chem. Int. Ed. Engl.
1972,
11:
300
42b
Hwang JP.
Prakash GKS.
Olah GA.
Tetrahedron
2000,
56:
7199
42c
Effenberger F.
Buckel F.
Maier AH.
Schmider J.
Synthesis
2000,
1427 ; and references therein
43a
Mukaiyama T.
Nagaoka H.
Oshima M.
Murakami M.
Chem. Lett.
1986,
165
43b
Olah GA.
Farooq O.
Morteza S.
Farnia F.
Olah JA.
J. Am. Chem. Soc.
1988,
110:
2560
44
Matsuo J.-i.
Odashima K.
Kobayashi S.
Synlett
2000,
403
45
Kawada A.
Mitamura S.
Kobayashi S.
Chem. Commun.
1993,
1157
46a
Kawada A.
Mitamura S.
Kobayashi S.
Synlett
1994,
545
46b
Kobayashi S.
Nagayama S.
J. Am. Chem. Soc.
1998,
120:
2985
47
Kawada A.
Mitamura S.
Kobayashi S.
Chem. Commun.
1996,
183
48a
Hachiya I.
Moriwaki M.
Kobayashi S.
Tetrahedron Lett.
1995,
36:
409
48b
Kobayashi S.
Komoto I.
Tetrahedron
2000,
56:
6463
49
Chapman CJ.
Frost CG.
Hartley JP.
Whittle AJ.
Tetrahedron Lett.
2001,
42:
773
50
Izumi J.
Mukaiyama T.
Chem. Lett.
1996,
739
51
Kobayashi S.
Iwamoto S.
Tetrahedron Lett.
1998,
39:
4697
52 Dubac J, Gaspard H, Labrouillère M, Laporterie A, Desmurs J.-R, and Le Roux C. inventors; PCT Int. Appl. WO 97 11930.
; Chem. Abstr. 1997, 126, 317246h
53
Desmurs J.-R.
Labrouillère M.
Le Roux C.
Gaspard H.
Laporterie A.
Dubac J.
Tetrahedron Lett.
1997,
38:
8871
54
Répichet S.
Le Roux C.
Dubac J.
Desmurs J.-R.
Eur. J. Org. Chem.
1998,
2743
55 Le Roux, C.; Dubac, J. unpublished results.
56a
Labrouillère M.
Le Roux C.
Gaspard H.
Laporterie A.
Dubac J.
Desmurs J.-R.
Tetrahedron Lett.
1999,
40:
285
56b
Preparation of Bismuth(III) Trifluoromethanesulfonate:
[52]
[56]
In a 250 mL flask connected to an argon line were introduced 4.40 g (0.01 mol) of triphenylbismuth and 100 mL of freshly distilled dichloromethane. Then the flask was immersed in an acetone/dry ice bath and 4.50 g (0.03 mol) of triflic acid were added via a syringe under magnetic stirring. After 10 min the bath was removed and the reaction was stirred at r.t. for 10 h. The solid formed was filtered over a glass-frit funnel and washed once with 20 mL of dichloromethane. The very hygroscopic white powder obtained was heated at 50 °C under reduced pressure. Bismuth(III) triflate was isolated in its weakly hydrated forms,
[57]
[58]
mainly the tetrahydrated one (by TGA and XRD)
[58]
(6.48 g; 89% yield). NMR (acetone-d
6
): 13C NMR: δ = 120 ppm (q,
¹
J (13
C/19
F) = 321 Hz); 19F NMR: δ (from TfOH) = 0.84 ppm. IR(nujol) : 3450-3550 (m), 1230-1290(vs), 1180 (s), 1034 (s), 1028(sh), 650(sh), 643 (s)cm-1. A variant of our process using toluene instead of dichloromethane as solvent was recently reported, and Bi(OTf)3 was described to be stable and active even after two year storage at r.t.
[14]
57
Frank W.
Reiss GJ.
Schneider J.
Angew. Chem. Int. Ed. Engl.
1995,
34:
2416
58
Louër M.
Le Roux C.
Dubac J.
Chem. Mater.
1997,
9:
3012
59
Répichet S.
Le Roux C.
Hernandez P.
Dubac J.
J. Org. Chem.
1999,
64:
6479
Reviews about the FC sulfonylation:
60a
Jensen FR.
Goldman G. In
Friedel-Crafts and Related Reactions
Vol. III:
Olah GA.
Wiley-Interscience;
New York:
1964.
p.1319-1367
60b
Taylor R. In
Comprehensive Chemical Kinetics
Banford CH.
Tipper CFH.
Elsevier;
New York:
1972.
p.77-83
60c
Taylor R.
Electrophilic Aromatic Substitution
Wiley;
Chichester:
1990.
p.334-337
60d
Smith K.
Ewart GM.
Randles KR.
J. Chem. Soc. Perk Trans. 1
1997,
1085
60e
Olah GA.
Orlinkov A.
Oxyzoglou AB.
Prakash GKS.
Russian J. Org. Chem.
1998,
34:
1573
60f
Choudary BM.
Chowdari NS.
Kantam ML.
Kannan R.
Tetrahedron Lett.
1999,
40:
2859
60g
Choudary BM.
Chowdari NS.
Kantam ML.
J. Chem. Soc., Perkin Trans 1
2000,
2689
60h
Marquié J.
Laporterie A.
Dubac J.
Roques N.
Desmurs J.-R.
J. Org. Chem.
2001,
66:
421
60i
Frost CG.
Hartley JP.
Whittle AJ.
Synlett
2001,
830
61
Effenberger F.
Huthmacher K.
Chem. Ber.
1976,
109:
2315
62
Ono M.
Nakamura Y.
Sato S.
Itoh I.
Chem. Lett.
1988,
395
63a
Tedder JM.
Chem. Rev.
1955,
55:
787
63b
Graybill BM.
J. Org. Chem.
1967,
32:
2931
63c
Sipe HJ.
Clary DW.
White SB.
J. Chem. Soc., Chem. Commun.
1984,
283
63d
Ueda M.
Uchiyama K.
Kano T.
J. Chem. Soc., Chem. Commun.
1984,
323
64a
Effenberger F.
Huthmacher K.
Angew. Chem. Int. Ed. Engl.
1974,
13:
409
64b
Huthmacher K.
König G.
Effenberger F.
Chem. Ber.
1975,
108:
2947
65
Répichet S.
Le Roux C.
Dubac J.
Tetrahedron Lett.
1999,
40:
9233
66a
Chan TH.
Fleming I.
Synthesis
1979,
761
66b
Fleming I.
Dunoguès J.
Smithers R.
Org. React.
1989,
37:
57 ; and references therein
67
Calas R.
Dunoguès J.
Pillot JP.
Biran C.
Pisciotti E.
Arreguy B.
J. Organometal. Chem.
1975,
85:
149
68
Le Roux C.
Dubac J.
Organometallics
1996,
15:
4646
69
Pillot JP.
Dunoguès J.
Calas R.
Tetrahedron Lett.
1976,
22:
1871
70
Hoffmann HMR.
Haase K.
Synthesis
1981,
715
71
Olah GA.
Narang SC.
Tetrahedron
1982,
38:
2225
72
Murai S.
Kuroki Y.
Hasegawa K.
Tsutsumi S.
J. Chem. Soc., Chem. Commun.
1972,
946
73a
Murai S.
Hasigawa K.
Sonoda N.
Angew. Chem. Int. Ed. Engl.
1975,
14:
636
73b
Effenberger F.
Ziegler T.
Schönwälder KH.
Kesmarsky T.
Bauer B.
Chem. Ber.
1986,
119:
3394
74
Hopka I.
Rathke MW.
J. Org. Chem.
1981,
46:
3771
75a
Kramarova EN.
Baukov YI.
Lutsenko IF.
Zh. Obshch. Khim.
1973,
43:
1857
75b
Limat D.
Schlosser M.
Tetrahedron
1995,
51:
5799
76
Tirpak RE.
Rathke MW.
J. Org. Chem.
1982,
47:
5099
77a
Le Roux C.
Mandrou S.
Dubac J.
J. Org. Chem.
1996,
61:
3885
77b
Le Roux C.
Mandrou S.
Dubac J.
J. Org. Chem.
1996,
61:
9635
Reviews about the acylation of alcohols:
78a
March J.
Advanced Organic Chemistry. Reactions, Mechanisms, and Structure
4th ed.:
Wiley;
New York:
1992.
p.392-393
78b
March J.
Advanced Organic Chemistry. Reactions, Mechanisms, and Structure
4th ed.:
Wiley;
New York:
1992.
p.980-981
78c
Höfle G.
Steglich V.
Vorbruggen H.
Angew. Chem., Int. Ed. Engl.
1978,
17:
569
78d
Scriven EFV.
Chem. Soc. Rev.
1983,
12:
129
78e
Mulzer J. In
Comprehensive Organic Synthesis
Vol. 6, Chap. 2.2:
Trost BM.
Pergamon Press;
Oxford:
1991.
p.323-380
79a Sn(OTf)2 and metal chloride-AgOTf systems: Mukaiyama T.
Shiina I.
Miyashita M.
Chem. Lett.
1992,
625
79b TiCl(OTf)3: Izumi J.
Shiina I.
Mukaiyama T.
Chem Lett.
1995,
141
79c Sc(OTf)3: Ishihara K.
Kubota M.
Kurihara H.
Yamamoto H.
J. Org. Chem.
1996,
61:
4560
79d Me3SiOTf: Procopiou PA.
Baugh SPD.
Flack SS.
Inglis GGA.
J. Org. Chem.
1998,
63:
2342
79e
Damen EWP.
Braamer L.
Scheeren HW.
Tetrahedron Lett.
1998,
39:
6081
79f Cu(OTf)2: Saravanan P.
Singh VK.
Tetrahedron Lett.
1999,
40:
2611
79g In(OTf)3: Chauhan KK.
Frost CG.
Love I.
Waite D.
Synlett
1999,
1743
79h Bi(OTf)3: Orita A.
Tanahashi C.
Kakuda A.
Otera J.
Angew. Chem. Int. Ed.
2000,
39:
2877
80 Mercury (II) triflate [prepared from diphenyl mercury and triflic acid, as Bi(OTf)3]
[56]
reveals a good catalytic activity in FC acylation reactions, especially using acid chlorides as reagents.
[55]
81a Singh RP.
Kamble RM.
Chandra KL.
Saravanan P.
Singh VK.
Tetrahedron
2001,
57:
241
82a Répichet S, Le Roux C, and Dubac J. inventors; French Patent No. 02781.
82b
Répichet S.
Vendier L.
Le Roux C.
Dubac J.
Tetrahedron Lett.
2002, in press
83
Kobayashi S.
Komoto I.
Matsuo J.
Adv. Synth. Catal.
2001,
343:
71
84
Carrigan MD.
Freiberg DA.
Smith RC.
Zerth HM.
Mohan RS.
Synthesis
2001,
2091