Synlett 2002(2): 0181-0200
DOI: 10.1055/s-2002-19743
ACCOUNT
© Georg Thieme Verlag Stuttgart · New York

Bismuth(III) Chloride and Triflate: Novel Catalysts for Acylation and Sulfonylation Reactions. Survey and Mechanistic Aspects

Christophe Le Roux, Jacques Dubac
Hétérochimie Fondamentale et Appliquée (UMR CNRS 5069), Université Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
Fax: +33(5)61558204; e-Mail: dubac@chimie.ups-tlse.fr; e-Mail: leroux@chimie.ups-tlse.fr;
Weitere Informationen

Publikationsverlauf

Received 20 July 2001
Publikationsdatum:
02. Februar 2007 (online)

Abstract

Acylation and sulfonylation reactions catalyzed by bismuth(III) chloride or triflate are reviewed. For Friedel-Crafts reactions the mechanistic study reveals the different behavior of Bi(OTf)3, depending on the electrophilic agent used; either that of Lewis acid (with acid anhydrides) or that of procatalyst, carrier of triflate groups (with acid chlorides), leading to in situ generation of mixed anhydrides (RCOOTf or RSO2OTf) responsible for the aromatic electrophilic substitution. Among the metal triflates tested in these reactions, only Ga(III) and In(III) exhibit high activity. Bi(OTf)3 appears to be superior to other metal triflates known to catalyze the acylation of alcohols using acid anhydrides as reagents. BiCl3, especially in the presence of a metal iodide, is the only known efficient catalyst for acyldesilylation reactions of allyl- and enoxysilanes. The low cost of bismuth compounds and their low (or absence of) toxicity are emphasized.

  • 1 Introduction

  • 2 Acylation of Aromatics

  • 2.1 Bi(III) Chloride as Catalyst

  • 2.1.1 Mechanistic Aspects

  • 2.2 Bismuth(III) Triflate as Catalyst

  • 2.2.1 Literature Survey of Triflates Used as Catalysts of Friedel-Crafts Acylation

  • 2.2.2 Bismuth(III) Triflate as Catalyst. Results

  • 2.2.3 Mechanistic Aspects

  • 2.2.4 Comparison of the Catalytic Activities of Bi(OTf)3 and Other Metal Triflates

  • 3 Sulfonylation of Aromatics

  • 3.1 Bismuth(III) Chloride as Catalyst

  • 3.2 Bismuth(III) Triflate as Catalyst

  • 3.3 Mechanistic Aspects

  • 4 Acyldesilylation of Organosilanes

  • 4.1 Acyldesilylation of Allylsilanes

  • 4.2 Acyldesilylation of Enoxysilanes

  • 5 Acylation of Alcohols

  • 6 Conclusion

    References

  • 1a Irwing-Sax N. Bewis RJ. Dangerous Properties of Industrial Materials   Van Nostran Reinhold; New York: 1989.  p.283-284  
  • 1b Irwing-Sax N. Bewis RJ. Dangerous Properties of Industrial Materials   Van Nostran Reinhold; New York: 1989.  p.522-523  
  • 2 Wormser U. Nir I. In The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds   Patai S. Wiley; New York: 1994.  p.715-723  
  • 3 Dill K. McGown EL. In The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds   S . Wiley; New York: 1994.  p.695-713  
  • 4a Maeda S. In The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds   Patai S. Wiley; New York: 1994.  p.725-759  
  • 4b Reglinski J. In Chemistry of Arsenic, Antimony and Bismuth   Chap. 8:  Norman NC. Blackie Academic and Professional; London: 1998.  p.403-440  
  • 5a Godfrey SM. McAuliffe CA. Mackie AG. Pritchard RG. In Chemistry of Arsenic, Antimony and Bismuth   Chap. 3:  Norman NC. Blackie Academic and Professional; London: 1998.  p.67-158  
  • 5b Suzuki H. Matano Y. In Chemistry of Arsenic, Antimony and Bismuth   Chap. 6:  Norman NC. Blackie Academic and Professional; London: 1998.  p.283-343  
  • 6a Carapella SC. Howe HE. In Encyclopedia of Chemical Technology   3rd ed., Vol. 3:  Wiley; New York: 1978.  p.912-921  
  • 6b Krüger J. Winkler P. Lüderitz E. Lück M. In Ullman’s Encyclopedia of Industrial Chemistry   Vol. A4:  Gerhartz WE. VCH; Weinheim: 1985.  p.171-189  
  • 6c Polmear IJ. In Chemistry of Arsenic, Antimony and Bismuth   Chap. 2:  Norman NC. Blackie Academic and Professional; London: 1998.  p.39-65  
  • 7a Ohara T. Sato T. Shimizu N. In Ullman’s Encyclopedia of Industrial Chemistry   Vol. A1:  Gerhartz W. VCH; Weinheim: 1985.  p.149-160  
  • 7b Langvardt PW. In Ullman’s Encyclopedia of Industrial Chemistry   Vol. A1:  Gerhartz W. VCH; Weinheim: 1985.  p.177-184  
  • 8a Huang Y.-Z. Zhou Z.-L. In Comprehensive Organometallic Chemistry   Vol. 11:  Abel EW. Stone FGA. Wilkinson G. Pergamon; New York: 1995.  p.502-513  
  • 8b Suzuki H. Ikegami T. Matano Y. Synthesis  1997,  249 
  • 8c Marshall JA. Chemtracts  1997,  10:  1064 
  • 8d Komatsu N. In Organobismuth Chemistry   Suzuki H. Matano Y. Elsevier; Amsterdam: 2001.  p.371-440 
  • 9a Barton DHR. Pure and Appl. Chem.  1987,  59:  937 
  • 9b Finet JP. Chem. Rev.  1989,  89:  1487 
  • 9c Matano Y. Suzuki H. Bull. Chem. Soc. Jpn  1996,  69:  2673 ; and references therein
  • 10a Suzuki H. Ikegami T. Matano Y. Synthesis  1997,  251 ; and references cited therein
  • 10b Tymonko SA. Nattier BA. Mohan RS. Tetrahedron Lett.  1999,  40:  7657 
  • 10c Coin C. Le Boisselier V. Favier I. Postel M. Dunach E. Eur. J. Org. Chem.  2001,  735 
  • 10d Eash KJ. Pulia MS. Wieland LC. Mohan RS. J. Org. Chem.  2000,  65:  8399 
  • 10e Nattier BA. Eash KJ. Mohan RS. Synthesis  2001,  1010 
  • 10f Anderson AM. Blazek JM. Garg P. Payne BJ. Mohan RS. Tetrahedron Lett.  2000,  41:  1527 
  • 10g Mohammadpoor-Baltork I. Tangestaninejad S. Aliyan H. Mirkhani V. Synth. Commun.  2000,  30:  2365 
  • 10h Oussaid A. Boukherroub R. Déjean V. Garrigues B. Phosphorus, Sulfur and Silicon  2000,  167:  81 
  • 10i Bassett MR, Bedard TC, Christensen SP, Keen BT, and Sleadd BA. inventors; US Patent Application  343767.  ; Chem. Abstr. 2001, 134, 71304y
  • 10j Labrouillère M. Le Roux C. Gaspard-Iloughmane H. Dubac J. Synlett  1994,  723 
  • 10k Labrouillère M. Le Roux C. Oussaid A. Gaspard-Iloughmane H. Dubac J. Bull. Soc. Chim. Fr.  1995,  132:  522 
  • 10l Montero JL. Winum JY. Leydet A. Kamal M. Pavia AA. Roque JP. Carbohydr. Res.  1997,  297:  175 
  • 10m Winum JY. Kamal M. Barragan V. Leydet A. Montero JL. Synth. Commun.  1998,  603 
  • 10n Oussaid A. Garrigues P. Garrigues B. C. R. Acad. Sci.  2001,  691 
  • 11a Wada M. Takeichi E. Matsumoto T. Bull. Chem. Soc. Jpn.  1991,  69:  990 
  • 11b Le Roux C. Gaspard-Iloughmane H. Dubac J. Jaud J. Vignaux P. J. Org. Chem.  1993,  58:  1835 
  • 11c Le Roux C. Gaspard-Iloughmane H. Dubac J. Bull. Soc. Chim. Fr.  1993,  130:  832 
  • 11d Le Roux C. Gaspard-Iloughmane H. Dubac J. J. Org. Chem.  1994,  59:  2238 
  • 12 Peidro L. Le Roux C. Laporterie A. Dubac J. J. Organomet. Chem.  1996,  521:  397 
  • 13a Garrigues B. Gonzaga F. Robert H. Dubac J. J. Org. Chem.  1997,  62:  4880 
  • 13b Robert H. Garrigues B. Dubac J. Tetrahedron Lett.  1998,  39:  1161 
  • 13c Laurent-Robert H. Le Roux C. Dubac J. Synlett  1998,  1138 
  • 13d Motorina IA. Grierson DS. Tetrahedron Lett.  1999,  40:  7215 
  • 13e Laurent-Robert H. Garrigues B. Dubac J. Synlett  2000,  1160 
  • 13f Laurent-Robert H. Garrigues B. Dubac J. Synlett  2001,  564  
  • 14 Torisawa Y. Nishe T. Minamikawa J.-i. Org. Process Res. Dev.  2001,  5:  84 ; Chem. Abstr. 2001, 134, 85980c
  • 15a Lange KCH. Klapötke TM. In The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds   Patai S. J. Wiley; New York: 1994.  p.315-366  
  • 15b Godfrey SM. McAuliffe CA. Mackie AG. Pritchard RG. In Chemistry of Arsenic, Antimony and Bismuth   Chap. 4:  Norman NC. Blackie Academic and Professional; London: 1998.  p.159-205  
  • 15c Whitmire KH. In Chemistry of Arsenic, Antimony and Bismuth   Chap. 7:  Norman NC. Blackie Academic and Professional; London: 1998.  p.345-402  
  • 16a Reed AE. Schleyer PR. J. Am. Chem. Soc.  1990,  112:  1434 
  • 16b Carmalt CJ. Norman NC. In Chemistry of Arsenic, Antimony and Bismuth   Chap. 1:  Norman NC. Blackie Academic and Professional; London: 1998.  p.1-38  
  • 17a Pearson RG. J. Am. Chem. Soc.  1963,  85:  3533 
  • 17b Pearson RG. Science  1966,  151:  172 
  • 18a March J. Advanced Organic Chemistry. Reactions, Mechanisms, and Structure   4th ed.:  Wiley; New York: 1992.  p.487-495  
  • 18b March J. Advanced Organic Chemistry. Reactions, Mechanisms, and Structure   4th ed.:  Wiley; New York: 1992.  p.530 
  • 18c March J. Advanced Organic Chemistry. Reactions, Mechanisms, and Structure   4th ed.:  Wiley; New York: 1992.  p.539-542  
  • 18d March J. Advanced Organic Chemistry. Reactions, Mechanisms, and Structure   4th ed.:  Wiley; New York: 1992.  p.598-600  
  • 18e Larock RC. Comprehensive Organic Transformations   VCH; Weinheim: 1989.  p.681-719  
  • 19a Fleming I. Dunoguès J. Smithers R. Organic Reactions  1989,  37:  57 
  • 19b Fleming I. Dunoguès J. Smithers R. Organic Reactions  1989,  37:  148-154  
  • 19c Fleming I. Dunoguès J. Smithers R. Organic Reactions  1989,  37:  446-474  
  • 19d Benneteau B. Dunoguès J. Synlett  1993,  171 
  • Reviews about the FC acylation:
  • 20a Olah G. A.; Friedel-Crafts and Related Reactions; Wiley-Interscience: New York, 1963-1965;Vol. I-IV:
  • 20b Olah GA. Friedel-Crafts Chemistry   Wiley-Interscience; New York: 1973. 
  • 20c Pearson DE. Buehler CA. Synthesis  1972,  533 
  • 20d Heaney H. In Comprehensive Organic Synthesis   Vol. 2, Chap. 3.2:  Trost BM. Pergamon Press; Oxford: 1991.  p.733-752  
  • 20e Taylor R. Electrophilic Aromatic Substitution   Chap. 6:  Wiley-Interscience; Chichester: 1990.  p.222-238  
  • 20f Scheele JJ. Ph.D. Thesis   Tech. Hogesh, Delft; The Netherlands: 1991. 
  • 20g Olah GA. Reddy VP. Prakash GKS. In Encyclopedia of Chemical Technology   4 th ed., Vol. 11:  Wiley; New York: 1994.  p.1042-1081  
  • 20h Mahato SB. J. Indian Chem. Soc.  2000,  77:  175 
  • 21a Ashforth R. Desmurs J.-R. Ind. Chem. Libr.  1996,  8 
  • 21b The Roots of Organic Development   Desmurs J.-R. Ratton S. Elsevier; Amsterdam: 1996.  p.3-14  
  • 22 Dermer OC. Wilson DM. Johnson FM. Dermer VH. J. Am. Chem. Soc.  1941,  63:  2881 
  • 23 Scheele JJ. Ph.D. Thesis   Chap. 2:  Tech. Hogesh, Delft; The Netherlands: 1991.  p.35-45  
  • 24 Tsukervanik IP. Veber NV. Dokl. Akad. Nauk SSSR  1968,  180:  892 
  • 25 Suzuki K. Kitagawa H. Mukaiyama T. Bull. Soc. Chem. Jpn  1993,  66:  3729 
  • 26a Desmurs J.-R. Labrouillère M. Dubac J. Laporterie A. Gaspard H. Metz F. Ind. Chem. Libr.  1996,  8 
  • 26b The Roots of Organic Development   Desmurs J.-R. Ratton S. Elsevier; Amsterdam: 1996.  p.15-28  
  • 26c Labrouillère M. Thesis   Université Paul-Sabatier; France: 1995. 
  • 26d Dubac J, Labrouillère M, Laporterie A, and Desmurs J.-R. inventors; Eur. Pat., Appl. EP,  698593.  ; Chem. Abstr. 1996, 124, 316758y
  • 26e

    Typical Procedure for the Benzoylation of Anisole: In a 250 mL flask were introduced anisole (21.63 g; 0.2 mol), benzoyl chloride (14.56 g; 0.1 mol) and bismuth chloride (3.15 g; 0.01 mol). The flask, equipped with a condenser, was heated in a thermostated oil bath at 80 °C for 6 h. After the mixture was cooled, GC analysis of crude product using tetradecane as internal standard indicated that methoxybenzophenone(1) had formed in quantitative yield (with respect to PhCOCl). Dichloromethane (60 mL) and 6% aqueous HCl (60 mL) were added to the crude mixture. The combined organic phases were dried over magnesium sulfate and concentrated. The product was purified by flash chromatography (silica gel; eluent: pentane/ether = 9:1) to afford ketone 1 (19.10 g; 90% yield). The ratio of isomers was determined by GC analysis: o-/m-/p-1 = 8:trace:92. The recovery of bismuth was effected from the aqueous phase through the medium of the oxychloride. A NaOH (2 M) aqueous solution was added to the aqueous acid phase up to the neutralization and formation of a white precipitate of BiOCl. This solid was filtered and oven-dried for 5 h. Mass of BiOCl obtained: 2.59 g (99.5% recovery of bismuth).

  • 27 Hansch C. Leo A. Taft R. Chem. Rev.  1991,  91:  165 
  • 28a Cornélis A. Gerstmans A. Laszlo P. Mathy A. Zieba I. Catal. Lett.  1990,  6:  103 
  • 28b Cornélis A. Laszlo P. Wang S. Tetrahedron Lett.  1993,  34:  3849 
  • For a study of byproducts in FC acylation in the presence of metallic chlorides, see:
  • 29a Scheele JJ. Ph.D. Thesis   Chap. 1:  Tech. Hogesh, Delft; The Netherlands: 1991.  p.24-25  
  • 29b Scheele JJ. Ph.D. Thesis   Chap. 3:  Tech. Hogesh, Delft; The Netherlands: 1991.  p.47-68  
  • 30a Laporte C. Marquié J. Laporterie A. Desmurs J.-R. Dubac J. C. R. Acad. Sci.  1999,  II c:  455 
  • 30b Marquié J. Laporte C. Laporterie A. Dubac J. Desmurs J.-R. Roques N. Ind. Eng. Chem. Res.  2000,  39:  1124 
  • 31 Scheele JJ. Ph.D. Thesis   Chap. 6:  Tech. Hogesh, Delft; The Netherlands: 1991.  p.115-145  
  • 32 Paul RC. Singh D. Saandhu SS. J. Chem. Soc.  1959,  319 
  • 33a Olah GA. Germain A. White AM. In Carbonium Ions   Chap. 35:  Olah GA. Schleyer PR. Wiley; New York: 1976. 
  • 33b Germain A. Commeyras A. Casadevall A. Bull. Soc. Chim. Fr.  1972,  3177 
  • 34 Chevrier B. Weiss R. Angew. Chem. Int. Ed. Engl.  1974,  13:  1 
  • 35 Murafuji T. Mutoh T. Satoh K. Tsunenari K. Azuma N. Suzuki H. Organometallics  1995,  14:  3848 
  • 36a Olah GA. Friedel-Crafts and Related Reactions   Part 2, Vol. III:  Wiley-Interscience; New York: 1963-1965.  p.1004-1012  
  • 36b Scheele JJ. Ph.D. Thesis   Chap. 1:  Tech. Hogesh, Delft; Netherlands: 1991.  p.14-21  ; and references therein
  • 37 Scheele JJ. Ph.D. Thesis   Chap. 1:  Tech. Hogesh, Delft; Netherlands: 1991.  p.21-23  ; and references therein
  • 38 Frank W. Schneider J. Müller-Becker S. Chem. Commun.  1993,  799 ; and references therein.
  • 39 Haszeldine RN. Kidd JM. J. Chem. Soc.  1954,  4228 
  • 40a Germain A. Commeyras A. Casadevall A. Bull. Soc. Chim. Fr.  1973,  2527 
  • 40b Germain A. Commeyras A. Casadevall A. Bull. Soc. Chim. Fr.  1973,  2537 
  • 40c Effenberger F. Angew. Chem. Int. Ed. Engl.  1980,  19:  151 
  • 40d Effenberger F. Eberhard JK. Maier AH. J. Am. Chem. Soc.  1996,  118:  1257 ; and references therein
  • 41a Effenberger F. Epple G. Angew. Chem. Int. Ed. Engl.  1972,  11:  299 
  • 41b Effenberger F. Sohn E. Epple G. Chem. Ber.  1983,  116:  1195 
  • 41c Effenberger F. Epple G. Eberhard JK. Bühler U. Sohn E. Chem. Ber.  1983,  116:  1183 
  • 42a Effenberger F. Epple G. Angew. Chem. Int. Ed. Engl.  1972,  11:  300 
  • 42b Hwang JP. Prakash GKS. Olah GA. Tetrahedron  2000,  56:  7199 
  • 42c Effenberger F. Buckel F. Maier AH. Schmider J. Synthesis  2000,  1427 ; and references therein
  • 43a Mukaiyama T. Nagaoka H. Oshima M. Murakami M. Chem. Lett.  1986,  165 
  • 43b Olah GA. Farooq O. Morteza S. Farnia F. Olah JA. J. Am. Chem. Soc.  1988,  110:  2560 
  • 44 Matsuo J.-i. Odashima K. Kobayashi S. Synlett  2000,  403 
  • 45 Kawada A. Mitamura S. Kobayashi S. Chem. Commun.  1993,  1157 
  • 46a Kawada A. Mitamura S. Kobayashi S. Synlett  1994,  545 
  • 46b Kobayashi S. Nagayama S. J. Am. Chem. Soc.  1998,  120:  2985 
  • 47 Kawada A. Mitamura S. Kobayashi S. Chem. Commun.  1996,  183 
  • 48a Hachiya I. Moriwaki M. Kobayashi S. Tetrahedron Lett.  1995,  36:  409 
  • 48b Kobayashi S. Komoto I. Tetrahedron  2000,  56:  6463 
  • 49 Chapman CJ. Frost CG. Hartley JP. Whittle AJ. Tetrahedron Lett.  2001,  42:  773 
  • 50 Izumi J. Mukaiyama T. Chem. Lett.  1996,  739 
  • 51 Kobayashi S. Iwamoto S. Tetrahedron Lett.  1998,  39:  4697 
  • 52 Dubac J, Gaspard H, Labrouillère M, Laporterie A, Desmurs J.-R, and Le Roux C. inventors; PCT Int. Appl. WO 97  11930.  ; Chem. Abstr. 1997, 126, 317246h
  • 53 Desmurs J.-R. Labrouillère M. Le Roux C. Gaspard H. Laporterie A. Dubac J. Tetrahedron Lett.  1997,  38:  8871 
  • 54 Répichet S. Le Roux C. Dubac J. Desmurs J.-R. Eur. J. Org. Chem.  1998,  2743 
  • 56a Labrouillère M. Le Roux C. Gaspard H. Laporterie A. Dubac J. Desmurs J.-R. Tetrahedron Lett.  1999,  40:  285 
  • 56b

    Preparation of Bismuth(III) Trifluoromethanesulfonate: [52] [56] In a 250 mL flask connected to an argon line were introduced 4.40 g (0.01 mol) of triphenylbismuth and 100 mL of freshly distilled dichloromethane. Then the flask was immersed in an acetone/dry ice bath and 4.50 g (0.03 mol) of triflic acid were added via a syringe under magnetic stirring. After 10 min the bath was removed and the reaction was stirred at r.t. for 10 h. The solid formed was filtered over a glass-frit funnel and washed once with 20 mL of dichloromethane. The very hygroscopic white powder obtained was heated at 50 °C under reduced pressure. Bismuth(III) triflate was isolated in its weakly hydrated forms, [57] [58] mainly the tetrahydrated one (by TGA and XRD) [58] (6.48 g; 89% yield). NMR (acetone-d 6 ): 13C NMR: δ = 120 ppm (q, ¹ J (13 C/19 F) = 321 Hz); 19F NMR: δ (from TfOH) = 0.84 ppm. IR(nujol) : 3450-3550 (m), 1230-1290(vs), 1180 (s), 1034 (s), 1028(sh), 650(sh), 643 (s)cm-1. A variant of our process using toluene instead of dichloromethane as solvent was recently reported, and Bi(OTf)3 was described to be stable and active even after two year storage at r.t. [14]

  • 57 Frank W. Reiss GJ. Schneider J. Angew. Chem. Int. Ed. Engl.  1995,  34:  2416 
  • 58 Louër M. Le Roux C. Dubac J. Chem. Mater.  1997,  9:  3012 
  • 59 Répichet S. Le Roux C. Hernandez P. Dubac J. J. Org. Chem.  1999,  64:  6479 
  • Reviews about the FC sulfonylation:
  • 60a Jensen FR. Goldman G. In Friedel-Crafts and Related Reactions   Vol. III:  Olah GA. Wiley-Interscience; New York: 1964.  p.1319-1367  
  • 60b Taylor R. In Comprehensive Chemical Kinetics   Banford CH. Tipper CFH. Elsevier; New York: 1972.  p.77-83  
  • 60c Taylor R. Electrophilic Aromatic Substitution   Wiley; Chichester: 1990.  p.334-337  
  • 60d Smith K. Ewart GM. Randles KR. J. Chem. Soc. Perk Trans. 1  1997,  1085 
  • 60e Olah GA. Orlinkov A. Oxyzoglou AB. Prakash GKS. Russian J. Org. Chem.  1998,  34:  1573 
  • 60f Choudary BM. Chowdari NS. Kantam ML. Kannan R. Tetrahedron Lett.  1999,  40:  2859 
  • 60g Choudary BM. Chowdari NS. Kantam ML. J. Chem. Soc., Perkin Trans 1  2000,  2689 
  • 60h Marquié J. Laporterie A. Dubac J. Roques N. Desmurs J.-R. J. Org. Chem.  2001,  66:  421 
  • 60i Frost CG. Hartley JP. Whittle AJ. Synlett  2001,  830 
  • 61 Effenberger F. Huthmacher K. Chem. Ber.  1976,  109:  2315 
  • 62 Ono M. Nakamura Y. Sato S. Itoh I. Chem. Lett.  1988,  395 
  • 63a Tedder JM. Chem. Rev.  1955,  55:  787 
  • 63b Graybill BM. J. Org. Chem.  1967,  32:  2931 
  • 63c Sipe HJ. Clary DW. White SB. J. Chem. Soc., Chem. Commun.  1984,  283 
  • 63d Ueda M. Uchiyama K. Kano T. J. Chem. Soc., Chem. Commun.  1984,  323 
  • 64a Effenberger F. Huthmacher K. Angew. Chem. Int. Ed. Engl.  1974,  13:  409 
  • 64b Huthmacher K. König G. Effenberger F. Chem. Ber.  1975,  108:  2947 
  • 65 Répichet S. Le Roux C. Dubac J. Tetrahedron Lett.  1999,  40:  9233 
  • 66a Chan TH. Fleming I. Synthesis  1979,  761 
  • 66b Fleming I. Dunoguès J. Smithers R. Org. React.  1989,  37:  57 ; and references therein
  • 67 Calas R. Dunoguès J. Pillot JP. Biran C. Pisciotti E. Arreguy B. J. Organometal. Chem.  1975,  85:  149 
  • 68 Le Roux C. Dubac J. Organometallics  1996,  15:  4646 
  • 69 Pillot JP. Dunoguès J. Calas R. Tetrahedron Lett.  1976,  22:  1871 
  • 70 Hoffmann HMR. Haase K. Synthesis  1981,  715 
  • 71 Olah GA. Narang SC. Tetrahedron  1982,  38:  2225 
  • 72 Murai S. Kuroki Y. Hasegawa K. Tsutsumi S. J. Chem. Soc., Chem. Commun.  1972,  946 
  • 73a Murai S. Hasigawa K. Sonoda N. Angew. Chem. Int. Ed. Engl.  1975,  14:  636 
  • 73b Effenberger F. Ziegler T. Schönwälder KH. Kesmarsky T. Bauer B. Chem. Ber.  1986,  119:  3394 
  • 74 Hopka I. Rathke MW. J. Org. Chem.  1981,  46:  3771 
  • 75a Kramarova EN. Baukov YI. Lutsenko IF. Zh. Obshch. Khim.  1973,  43:  1857 
  • 75b Limat D. Schlosser M. Tetrahedron  1995,  51:  5799 
  • 76 Tirpak RE. Rathke MW. J. Org. Chem.  1982,  47:  5099 
  • 77a Le Roux C. Mandrou S. Dubac J. J. Org. Chem.  1996,  61:  3885 
  • 77b Le Roux C. Mandrou S. Dubac J. J. Org. Chem.  1996,  61:  9635 
  • Reviews about the acylation of alcohols:
  • 78a March J. Advanced Organic Chemistry. Reactions, Mechanisms, and Structure   4th ed.:  Wiley; New York: 1992.  p.392-393  
  • 78b March J. Advanced Organic Chemistry. Reactions, Mechanisms, and Structure   4th ed.:  Wiley; New York: 1992.  p.980-981  
  • 78c Höfle G. Steglich V. Vorbruggen H. Angew. Chem., Int. Ed. Engl.  1978,  17:  569 
  • 78d Scriven EFV. Chem. Soc. Rev.  1983,  12:  129 
  • 78e Mulzer J. In Comprehensive Organic Synthesis   Vol. 6, Chap. 2.2:  Trost BM. Pergamon Press; Oxford: 1991.  p.323-380  
  • 79a Sn(OTf)2 and metal chloride-AgOTf systems: Mukaiyama T. Shiina I. Miyashita M. Chem. Lett.  1992,  625 
  • 79b TiCl(OTf)3: Izumi J. Shiina I. Mukaiyama T. Chem Lett.  1995,  141 
  • 79c Sc(OTf)3: Ishihara K. Kubota M. Kurihara H. Yamamoto H. J. Org. Chem.  1996,  61:  4560 
  • 79d Me3SiOTf: Procopiou PA. Baugh SPD. Flack SS. Inglis GGA. J. Org. Chem.  1998,  63:  2342 
  • 79e Damen EWP. Braamer L. Scheeren HW. Tetrahedron Lett.  1998,  39:  6081 
  • 79f Cu(OTf)2: Saravanan P. Singh VK. Tetrahedron Lett.  1999,  40:  2611 
  • 79g In(OTf)3: Chauhan KK. Frost CG. Love I. Waite D. Synlett  1999,  1743 
  • 79h Bi(OTf)3: Orita A. Tanahashi C. Kakuda A. Otera J. Angew. Chem. Int. Ed.  2000,  39:  2877 
  • 81a Singh RP. Kamble RM. Chandra KL. Saravanan P. Singh VK. Tetrahedron  2001,  57:  241 
  • 82a Répichet S, Le Roux C, and Dubac J. inventors; French Patent No.  02781. 
  • 82b Répichet S. Vendier L. Le Roux C. Dubac J. Tetrahedron Lett.  2002, in press
  • 83 Kobayashi S. Komoto I. Matsuo J. Adv. Synth. Catal.  2001,  343:  71 
  • 84 Carrigan MD. Freiberg DA. Smith RC. Zerth HM. Mohan RS. Synthesis  2001,  2091 
55

Le Roux, C.; Dubac, J. unpublished results.

80

Mercury (II) triflate [prepared from diphenyl mercury and triflic acid, as Bi(OTf)3] [56] reveals a good catalytic activity in FC acylation reactions, especially using acid chlorides as reagents. [55]