Synlett 2002(2): 0355-0357
DOI: 10.1055/s-2002-19749
LETTER
© Georg Thieme Verlag Stuttgart · New York

Diastereoselective Synthesis of Enantiomerically Pure 1,2-Disubstituted Cyclopropanols from Allylic Sulfones

D. Diez*, P. García, M. P. Pacheco, I. S. Marcos, N. M. Garrido, P. Basabe, J. G. Urones
Dpto. de Química Orgánica, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008 Salamanca, Spain
Fax: +34(923)294574; e-Mail: ddm@usal.es;
Weitere Informationen

Publikationsverlauf

Received 27 November 2001
Publikationsdatum:
02. Februar 2007 (online)

Abstract

Enantiomerically pure 1,2-disubstituted cyclopropanols have been obtained from allylic sulfones derived from (R)-glyceraldehyde, in good yield.

    References

  • 1a Donaldson WA. Tetrahedron  2001,  57:  8589 ; and references cited therein
  • 1b Esposito A. Taddei M. J. Org. Chem.  2000,  65:  9245 
  • For leading references, see:
  • 2a Salaün J. Rappoport Z. In The Chemistry of the Cyclopropyl Group, Rearrangements Involving the Cyclopropyl Group   Wiley; New York: 1987.  p.809 
  • 2b Houben-Weyl: Methods of Organic Chemistry, Carbocyclic Three and Four-membered Ring Systems   Vol. E.17:  de Meijere A. Thieme Verlag; Stuttgart: 1997. 
  • 2c Sylvestre I. Olivier J. Salaün J. Tetrahedron Lett.  2001,  42:  4991 ; and references cited therein
  • 2d Shaffer CL. Morton MD. Hanzlik RP. J. Am. Chem. Soc.  2001,  123:  8502 
  • 2e Kulinkovich OG. de Meijere A. Chem. Rev.  2000,  100:  2789 ; and references cited therein
  • For asymmetric synthesis of 1,2-disubstituted cyclopropanols in enantiomerically pure form from boronic esters, see:
  • 3a Pietruszka J. Widenmeyer M. Synlett  1997,  977 
  • 3b Fontani P. Carboni B. Vaultier M. Maas G. Synthesis  1991,  605 
  • 3c Imai T. Mineta H. Nishida S. J. Org. Chem.  1990,  55:  4986 
  • 3d Pietruszka J. Witt A. J. Chem. Soc. Perkin Trans. 1  2000,  4293 
  • 3e Luithle JEA. Pietruszka J. Witt A. J. Chem. Soc., Chem. Commun.  1998,  2651 
  • 3f Taylor RE. Schmidt MJ. Yuan H. Org. Lett.  2000,  2:  601 ; and references cited therein
  • 3g Baird MS. Huber AM. Clegg W. Tetrahedron  2001,  57:  9849 
  • 4 McGaffin G. Grimm B. Heinecke U. Michaelsen H. de Meijere A. Walsh R. Eur. J. Org. Chem.  2001,  3559 ; and references cited therein
  • 5a Morikawa T. Saski H. Hanai R. Shibuya A. Taguchi T. Muray E. J. Org. Chem.  1994,  59:  97 
  • 5b Evans DA. Burch JD. Org. Lett.  2001,  3:  503 
  • 5c Alvarez-Larena A. Piniella JF. Branchadell V. Ortuño RM. J. Org. Chem.  2000,  65:  388 
  • 5d Ma D. Cao Y. Yang Y. Cheng D. Org. Lett.  1999,  1:  285 
  • 6a Urones JG. Marcos IS. Garrido NM. Basabe P. Bastida AJ. San Feliciano SG. Díez Martín D. Goodman JM. Synlett  1998,  1361 
  • 6b Díez Martín D. San Feliciano SG. Marcos IS. Basabe P. Garrido NM. Urones JG. Synthesis  2001,  1069 
  • 7a Urones JG. Díez Martín D. Marcos IS. Garrido NM. Basabe P. San Feliciano SG. Coca R. Synlett  1998,  41:  1364 
  • 7b Díez Martín D. Templo Beneitez M. Marcos IS. Garrido NM. Basabe P. Urones JG. Synlett  2001,  655 
  • 8a Carreño MC. Cid MB. Carcia Ruano JL. Santos M. Tetrahedron Lett.  1998,  39:  1405 
  • 8b Hardinger SA. Fuchs PL. J. Org. Chem.  1987,  52:  2739 
  • 8c Padwa A. Murphree SS. Ni Z. Watterson SH. J. Org. Chem.  1996,  61:  3829 
  • 8d Cuvigny T. Herve du Penhoat C. Julia M. Tetrahedron  1986,  42:  5321 
  • 8e Backvall J.-E. Ericsson AM. Juntunen S. Nájera C. Yus M. J. Org. Chem.  1993,  58:  5221 
  • 9 Kociénski PJ. Protecting Groups   Thieme Verlag; Stuttgart/New York: 1994. 
  • 11 Militzer H.-C. Schömenauer S. Otte C. Puls C. Hain J. Bräse S. de Meijere A. Synthesis  1993,  998 ; and references cited therein
  • 12a For general review see: Wong HNC. Hon M.-Y. Tse C.-W. Yip Y.-C. Tanko J. Hudlicky T. Chem. Rev.  1989,  89:  165 
  • 12b Park S.-B. Cha JK. Org. Lett.  2000,  2:  147 ; and references cited therein
10

Experimental Details for the Transformation of 7: LDA was generated by the addition of n-butyllithium 1.6 M (0.25 mL, 0.38 mmol) to a solution of diisopropylamine (54 µL, 0.38 mmol) in THF (1.0 mL) at -78 ºC. After 5 minutes, the mixture was allowed to warm to room temperature, and then recooled to -78 ºC. Compound 7 (80 mg, 0.18 mmol) was then added to the reaction flask via cannula as a solution in THF (1 mL). The reaction mixture was left to stir for one hour at -78 ºC under argon before the addition of saturated ammonium chloride solution (1 mL). The product was extracted into ethyl acetate three times. The organic extracts were combined, washed with water and saturated brine, then dried over anhydrous sodium sulfate, filtered and removed the solvent in vacuo. The mixture was purified by flash silica column chromatography (hexane-ethyl acetate, 9:1) isolating 53 mg, 94% of a mixture 7:3 of cyclopropanes 8 and 9. Selected data for compound 8: [α]20 D = +17.2º, (c = 0.79, CHCl3), 1H NMR (200 MHz, CDCl3) δ 0.93 (1 H, m, Hβ-3), 1.04 (1 H, q, J = 6.4 Hz, Hα-3), 1.24 (1 H, m, H-2), 1.38-1.90 (6 H, m, H-2’, H-3’, H-4’), 3.57 (1 H, m, HA-5’), 3.71 (1 H, m, H-1), 3.86 (1 H, m, HB-5’), 4.68 (1 H, m, H-1’), 6.22 and 6.30 (1 H, d, J = 15 Hz, CH=CH-SO2Ph), 6.54 (1 H, dd, J = 15.0 and 10.0 Hz, CH=CH-SO2Ph), 7.56 (3 H, m, -SO2Ph), 7.86 (2 H, m, -SO2Ph). 13C NMR (50 MHz, CDCl3) δ 16.0 and 17.1 (C-3), 19.3 and 19.4 (C-3’), 21.5 and 22.2 (C-2), 25.5 (C-4’), 29.9 and 30.6 (C-2’), 59.0 (C-1), 62.6 and 62.8 (C-5’), 99.1 (C-1’), 127.5 and 128.2 (CH=CH-SO2Ph), 127.7 (Corto, -SO2Ph), 129.5 (Cmeta, -SO2Ph), 133.4 (Cpara, -SO2Ph), 141.1 (Cipso, -SO2Ph), 147.9 and 148.0 (CH=CH-SO2Ph). EIMS m/z (rel. int.): 309 (M+ + 1, 3), 279(5), 195(5), 167(10), 125,(10), 85(100). HRMS C16H20O4S requires 308,1082, found, 308,1082. IR (liquid film, cm-1): 3063, 2942, 1620, 1447, 1308, 1146, 1086. Selected data for compound 9: [α]20 D = -41.7º, (c = 0.87, CHCl3), 1H NMR (200 MHz, CDCl3) δ 0.91 (2 H, m, H-3), 1.08-1.89 (7 H, m, H-2’, H-3’, H-4’, H-2), 3.57 (1 H, m, HA-5’), 3.76-4.02 (2 H, m, HB-5’, H-1), 4.42 and 4.75 (1 H, m, H-1’), 6.42 (1 H, m, CH -SO2Ph), 6.80 (1 H, m, CH=CH -SO2Ph), 7.56 (3 H, m, -SO2Ph), 7.88 (2 H, m, -SO2Ph), 13C NMR (50 MHz, CDCl3) δ 15.8 and 17.0 (C-3), 19.3 and 19.5 (C-3’), 20.5 and 21.1 (C-2), 25.6 (C-4’), 30.3 and 30.6
(C-2’), 57.0 (C-1), 62.6 and 62.8 (C-5’), 99.3 (C-1’) 127.7 (Corto, -SO2Ph), 128.6 (CH -SO2Ph), 129.3 (Cmeta, -SO2Ph), 133.2 (Cpara, -SO2Ph), 141.4 (Cipso, -SO2Ph), 146.8 and 147.4 (CH=CH -SO2Ph). EIMS m/z (rel. int.): 308 (M+, 3), 224(5), 195(8), 125(15), 85(100). HRMS C16H20O4S requires 308,1082, found 308,1092. IR (film, cm-1): 2945, 1618, 1447, 1317, 1144.

13

Selected data for compound 13: [α]20 D =-17.2º, (c = 0.40, CHCl3), 1H NMR (400 MHz, CDCl3) δ 0.37 (1 H, q, J = 6.0 Hz, Hα-3), 0.76 (1 H, ddd, J = 9.2, 5.6 and 2.8 Hz, Hβ-3), 0.95 (1 H, m, H-2), 1.56-1.73 (3 H, m, CH2-CH2 -SO2Ph, -OH), 3.18 (2 H, m, -CH2 -SO2Ph), 3.25 (1 H, dt, J = 6.0, 2.8, 2.8 Hz, H-1), 7.58 (2 H, m, -SO2Ph), 7.65 (1 H, m, -SO2Ph), 7.91 (2 H, m, -SO2Ph), 13C NMR (50 MHz, CDCl3) δ 14.9 (C-3), 19.6 (C-2), 25.2 (CH2-CH2 -SO2Ph), 52.8 (C-1), 56.0 (CH2 -SO2Ph), 128.2 (Corto, -SO2Ph), 129.5 (Cmeta, -SO2Ph), 133.9 (Cpara, -SO2Ph), 139.5 (Cipso, -SO2Ph). EIMS m/z (rel. int.): 226 (M+, 5), 184(10), 143(65), 125(30), 84(85), 77(100). HRMS C11H14O3S requires 226.0664, found 226.0669. IR (liquid film, cm-1): 3200-3600, 2926, 1447, 1304, 1142, 1086, 689. Selected data for compound 14: [α]20 D = -8.5º, (c = 0.46, CHCl3), 1H NMR (400 MHz, CDCl3) δ 0.21 (1 H, m, Hα-3), 0.72 (1 H, m, Hβ-3), 1.20 (1 H, m, H-2), 1.90 (2 H, m, CH2-CH2 -SO2Ph), 3.25 (2 H, m, CH2 -SO2Ph), 3.53 (1 H, dt, J = 6.4, 6.4 and 3.2 Hz, H-1), 7.63 (3 H, m, -SO2Ph), 7.92 (2 H, m, -SO2Ph). 13C NMR (100 MHz, CDCl3) δ 13.0 (C-3), 16.5 (C-2), 20.4 (CH2-CH2 -SO2Ph), 49.6 (C-1), 56.4 (CH2 -SO2Ph), 127.9 (Corto, -SO2Ph), 129.2 (Cmeta, -SO2Ph), 133.6 (Cpara, -SO2Ph), 139.7 (Cipso, -SO2Ph). EIMS m/z (rel. int.): 226 (M+, 13), 184(12), 143(70), 125(30), 77(100). HRMS C11H14O3S requires 226.0664, found 226.0684. IR (liquid film, cm-1): 3200-3600, 3063, 2926, 2855, 1447, 1304, 1144, 1086.