Subscribe to RSS
DOI: 10.1055/s-2002-19758
A Novel, Short and Repeatable Two-Carbon Ring Expansion Reaction by Thermo-Isomerization: Easy Synthesis of Macrocyclic Ketones
Publication History
Publication Date:
02 February 2007 (online)

Abstract
A novel two-carbon ring enlargement procedure, in which medium- and large-ring 1-vinylcycloalkanols are thermo-isomerized in a flow reactor system at temperatures of 600 °C to about 650 °C, produces the isomeric ring-expanded cycloalkanones directly and efficiently. This two-step ring expansion protocol can easily be applied several times successively. For e.g., the musk odorant cyclopentadecanone (Exaltone ®) is prepared from cycloundecanone in two repetitive cycles. Thermo-isomerization of the corresponding ethynylic cycloalkanols gives in moderate yields the bishomologous α,β-unsaturated macrocyclic (E)-2-cycloalkenones. A reaction mechanism via alkyl hydroxyallyl biradical intermediates is proposed.
Key words
ring expansions - macrocyclic ketones - thermo-isomerization - ring-insertion reactions - hydroxyallyl radicals
- 1
Nagel M. Ph.D. Thesis University of Zürich; Switzerland: 2001. - For examples of so-called ”internal" (or also ”intramolecular") [1,5]-H shift reactions of the general retro-ene type under flash thermolysis conditions, see :
-
2a
Rippol J.-L.Vallée Y. Synthesis 1993, 659 -
2b
Brown RFC. In Pyrolytic Methods in Organic ChemistryWasserman RH. Academic Press; New York: 1980. Chap. 7. p.229-246 ; and references therein -
2c
Gajewski JJ. Hydrocarbon Thermal Isomerizations Academic Press; New York: 1981. -
2d
Karpf M. Angew. Chem., Int. Ed. Engl. 1986, 25: 414 ; Angew. Chem. 1986, 98, 413; and references therein -
4a
Dimitrov V.Bratovanov S.Simova S.Kostova K. Tetrahedron Lett. 1994, 35: 6713 -
4b
Typical Procedure for the Synthesis of Vinylcycloalkanols: Drying of cerium chloride: CeCl3 heptahydrate (100 g, 0.268 mol) was heated under reduced pressure (HV pump) in a Büchi Kugelrohr oven with continuous rotation of the bulb, at first with an air bath temperature of 70-80 °C for 5-6 h, then for 3-4 h at 110-120 °C, and finally for about 12 h (overnight) at 150-160 °C. The vaporized water was collected in cooling traps (liquid N2) and the thawed condensates were collected (about 34 mL). The dried (strongly hygroscopic) ivory-colored CeCl3 was stored under an argon atmosphere at r.t. in the dark. No loss in activity could be observed during storage over several months. Precomplexation of the ketone: Cyclododecanone (36.4 g, 0.2 mol) was, with stirring, added to a suspension of 5.0 g anhyd CeCl3 (0.02 mol, 0.1 mol equiv.) in anhyd THF (100 mL) at r.t. under an inert atmosphere. After 0.5-2 h, the yellowish colored suspension became homogenous and uniformly gel- (or yogurt-)like. To this mixture, of a 1 M solution of vinyl magnesium bromide (320 mL) in anhyd THF (0.32 mol, ca 1.6 mol equiv.) was added with stirring via a cannula within 10 min, whereby the temperature of the reaction mixture increased to 35-40 °C. After the exothermic phase of the reaction, stirring was continued for 20-30 min and the conversion of the starting ketone was monitored by TLC and GC analyses (normally more than 80% had been consumed after 15 min). Work-up: The now greyish-brown reaction mixture was poured into cold water (1 L ) and t-BuOMe (500 mL) were added. With stirring, a 10% aqueous HCl solution was added until the slimy or gel-like consistency of the mixture disappeared, and the mixture became clear and two-phased (pH < 3). The organic phase was washed several times with water, then with sat. NaHCO3 solution, and brine. After drying (MgSO4) and evaporation of the solvent under reduced pressure, the crude 1-vinylcyclododecanol 6 (GC purity about 90%) was purified either by bulb-to-bulb distillation (HV) and subsequent crystallization from hexane-t-BuOMe (95:5, v/v) or by chromatography on a short column (silica gel, eluent, hexane-t-BuOMe 97:3-95:5). Allylic alcohol 6 was obtained in yields of 75-85% as a colorless waxy solid (mp 53 °C). 1H NMR (300 MHz, CDCl3): 5.98 (dd, J = 10.8, 17.4 Hz, 1 H), 5.20 (dd, J = 1.4, 17.4 Hz, 1 H), 5.01 (dd, J = 1.4, 10.8 Hz, 1 H), 1.9-1.2 (m, 23 H). 13C NMR (75 MHz, CDCl3): 145.3 (d); 111.0 (t); 75.3 (s); 34.6(2), 26.3(2), 25.9, 22.5(2), 22.1(2), 19.5(2)(6 t). EI-MS (GC/MS): 210.2 (2, M + ), 192.2 (50, M - 18), 77.7(98), 67(100), 55(97). Also see:
-
4c
Marcou A.Normant H. Bull. Soc. Chim. Fr. 1965, 3491 -
4d
Herz W.Juo R.-R. J. Org. Chem. 1985, 50: 618 -
4e
Ref. 6a.
- The thermo-isomerization process was performed in flow reactor systems with different dimensions: e.g., a quartz tube reactor (40 cm length, 22 mm, and 40 mm i.d., respectively) heated by a tube furnace (35 cm single temperature zone, in a nearly horizontal position), cf. also:
-
5a
Nagel M. Diploma Thesis University of Zürich; Switzerland: 1998. -
5b
Nagel M.Hansen H.-J. Helv. Chim. Acta 2000, 83: 1022 -
5c
Typical Procedure: After evacuation of the apparatus with a high-vacuum oil pump, the starting material (typically 0.5-2 g) was distilled slowly (within 10-20 min, about 5-20 g/h) through the preheated reactor tube (contact times estimated at about 1-2 s). A flow of inert gas (N2 or Ar) was adjusted from 15 mL/min to over 50 mL/min (1-3 L/h). At the end of the reactor unit the high boiling isomerization products were collected in the first cooling trap at about 0 °C (85-90% recovery), and the more volatile side products in subsequent traps, which were cooled to lower temperatures. By adding filling materials into the reactor, surface-catalyzed side reactions (e.g. dehydration) become predominant (cf. ref. [2b] and also ref. [13] ). For more general reviews on short contact time reactions and synthetic applications of gas phase flash vacuum pyrolysis techniques, see also:
-
5d
McNab H. Contemp. Org. Synth. 1996, 3: 373 ; and references therein -
5e
Cadogen JIG.Hickson CL.McNab H. Tetrahedron 1986, 42: 2135 -
5f
Schiess P. Thermochim. Acta 1987, 112: 31 ; and references therein -
5g
Wiersum UE. Alrdrichimica Acta 1984, 17: 31 - For syntheses of 7, see e.g.:
-
6a
Galatsis P.Millan SD.Faber T. J. Org. Chem. 1993, 58: 1215 -
6b
Bienz S.Hesse M. Helv.Chim. Acta 1987, 70: 2146 -
6c
Drotloff H.Rotter H.Emeis D.Moeller M. J. Am. Chem. Soc. 1987, 109: 7797 -
6d
Porter NA.Chang VH.-T.Magnin DR.Wright BT. J. Am. Chem. Soc. 1988, 110: 3554 -
6e
Porter NA.Magnin DR.Wright BT. J. Am. Chem. Soc. 1986, 108: 2787 -
6f
Wender PA.Sieburth McNS.Petraitis JJ.Singh SK. Tetrahedron 1981, 37: 3967 -
6g
Karpf M.Dreiding AS. Helv. Chim. Acta 1975, 58: 2409 -
6h
Mühlstädt M.Gräfe J. Chem. Ber. 1967, 100: 223 -
6i
Müller E.Bauer M. Justus Liebigs Ann. Chem. 1962, 654: 92 - For syntheses of 9, see:
-
7a
Weiper-Idelmann A.Kahmen M.Schäfer HJ.Gockeln M. Acta Chem. Scand. 1998, 52: 672 -
7b
Nishino M.Kondo H.Miyake A. Chem. Lett. 1973, 667 -
8a
Ruzicka L. Helv. Chim. Acta 1926, 9: 245 -
8b
Mathur HH.Bhattacharyya SC. J. Chem. Soc. 1963, 114 -
8c
Motoda O. Chem. Abstr. 1950, 5828 -
8d
Williams AS. Synthesis 1999, 1707 ; and references therein -
9a
Baldwin JE.Vollmer HR.Lee V. Tetrahedron Lett. 1999, 40: 5401 -
9b
Satoh T.Itoh N.Gengyo K.Takada S.Asakawa N. Tetrahedron 1994, 50: 11839 -
9c
Hashimoto N.Aoyama T.Shioiri T. Chem. Pharm. Bull. 1982, 30: 119 -
9d
Karpf M.Dreiding AS. Helv. Chim. Acta 1975, 58: 2409 -
9e
Taguchi H.Yamamoto H.Nozaki H. J. Am. Chem. Soc. 1974, 96: 6510 -
9f
Kirchhof W.Stumpf W.Franke W. Liebigs Ann. Chem. 1965, 681: 32 -
9g
Parham WE.Sperley RJ. J. Org. Chem. 1967, 926 ; see also ref. - For leading references to Exaltone ®(12), see:
-
10a
Fráter G.Bajgrowicz JA.Kraft P. Tetrahedron 1998, 54: 7633 -
10b
Fráter G.Lamparsky D. In Perfumes: Art, Science and TechnologyMüller PM.Lamparsky D. Elsevier; London, New York: 1991. Chap. 20. p.533-555 -
10c
Ohloff G. Helv. Chim. Acta 1992, 75: 2041 ; and literature cited therein -
10d
Ohloff G. Riechstoffe und Geruchssinn. Die molekulare Welt der Düfte Springer; Berlin: 1990. Chap. 9. p.195-219 -
10e
Mookherjee BD.Wilson RA. In Fragrance Chemistry: The Science of the Sense of SmellTheimer ET. Academic Press; New York: 1982. Chap. 12. p.433-494 -
10f
Bienz S.Hesse M. Helv. Chim. Acta 1988, 71: 1704 ; see also ref. -
10g
Suginome H.Yamada S. Tetrahedron Lett. 1987, 28: 3963 -
10h
Feldhues M.Schäfer HJ. Tetrahedron 1986, 42: 1285 -
10i
Mehta G.Rao KS. Tetrahedron Lett. 1984, 25: 1839 -
10k
Fehr Ch. Helv. Chim. Acta 1983, 66: 2512 -
10l
Kato T.Kondo H.Miyake A. Bull. Chem. Soc. Jpn. 1980, 53: 823 -
10m
Karpf M.Dreiding AS. Helv. Chim. Acta 1977, 60: 3045 - To the best of our knowledge, this two-carbon ring enlargement procedure is one of the shortest repeatable ring expansion reactions applied to carbocyclic systems: Examples of preparatively useful and efficiently repeatable ring expansion reactions by more than one carbon atom in carbocyclic systems are only rarely reported in the literature. For a definition and examples, see:
-
11a
Heimgartner H. Chimia 1980, 34: 333 ; and references therein -
11b
Hesse M. Ring Enlargement in Organic Chemistry VCH; Weinheim, Germany: 1990. Chap. 5. p.73-95 ; and references therein - 12
Thies RW.Billigmeier JE. J. Am. Chem. Soc. 1974, 96: 200 ; and references therein -
13a
Failes RL.Stimson VR. In The Chemistry of the Hydroxy GroupPatai S. Wiley; Chichester: 1980. Chap. 11. p.449-468 ; and references therein. -
13b
Grignard V.Chambret F. C. R. Hebd. Acad.Sci. 1926, 182: 299 -
13c
Holmes JL.Lossing FP. J. Am. Chem. Soc. 1982, 104: 2648 -
13d
Chuchani G.Rotinov A.Dominguez R. Int. J. Chem. Kinet. 1999, 31: 401 - 14 For a recent general survey and leading references, see:
Hudlicky T.Becker DA.Fan RL.Kozhushkov SI. In Houben-Weyl Vol. E17c:de Meijere A. Thieme; Stuttgart: 1997. p.2538-2565 - See also:
-
15a
Gutsche CD.Redmore D. Carbocyclic Ring Expansion Reactions Academic Press; New York: 1968. Chap. 9. p.161-173 -
15b
Gajewsky JJ. Hydrocarbon Thermal Isomerizations Academic Press; New York: 1982. p.81-87 and 177-185 -
15c
Salaün J. In The Chemistry of the Cyclopropyl GroupPatai S.Rappoport Z. Wiley; New York: 1987. p.809-878 -
15d
Baldwin JE. In The Chemistry of the Cyclopropyl Group Vol 2:Rappoport Z. Wiley; Chichester: 1995. p.469-494 -
15e
Salaün J. Top. Curr. Chem. 2000, 207: 1-67 -
15f
Trost BM.Bogdanowicz MJ. J. Am. Chem. Soc. 1973, 95: 5311 -
15g
Salaün J.Ollivier J. Nouv. J. Chim. 1981, 5: 587 -
15h
Salaün J. Chem. Rev. 1983, 83: 619 ; and references therein - For kinetic investigations, see:
-
16a
Trost BM.Scudder PH. J. Org. Chem. 1981, 46: 506 -
16b
Mc Gaffin G.de Meijere A.Walsh R. Chem. Ber. 1991, 124: 939 ; and references therein. - For theoretical studies, see:
-
17a
Baldwin JE. J. Comput. Chem. 1998, 19: 222 -
17d
Nendel M.Sperling D.Wiest O.Houk KN. J. Org. Chem. 2000, 65: 3259 - For 22 see:
-
20a
Leonhard NJ.Owens FH. J. Am. Chem. Soc. 1958, 80: 6039 -
20b
Stork G.MacDonald TL. J. Am. Chem. Soc. 1975, 97: 1264 - For 24 see:
-
21a
Prelog V.Frenkiel L.Kobelt M.Barman P. Helv. Chim. Acta 1947, 30: 1741 -
21b
Stoll M.Rouvé A. Helv. Chim. Acta 1947, 30: 1822 -
21c
Zountsas J.Meier H. Liebigs Ann. Chem. 1982, 1366 -
21d
Engman L. J. Org. Chem. 1988, 53: 4031 -
21e
Tanaka K.Ushio H.Yasuyuki K.Suzuki H. J. Chem. Soc., Perkin Trans. 1 1991, 1445 -
21f
Butlin RJ.Linney ID.Mahon MF.Tye H.Wills M. J. Chem. Soc., Perkin Trans. 1 1996, 95 ; selected spectroscopic data: For 22: 1H NMR (300 MHz, CDCl3): 6.83 (dt, J = 15.8, 7.4 Hz, 1 H), 6.20 (dt, J = 15.8, 1.3 Hz, 1 H), 2.53-2.48 (m, 2 H), 2.30-2.26 (m, 2 H), 1.80-1.67 (m, 2 H), 1.58-1.52 (m, 2 H), 1.45-1.2 (m, 14 H). 13C NMR (75 MHz, CDCl3): 202.1 (s), 148.2, 130.3 (2 d), 40.4, 31.4, 26.6, 26.3, 26.2, 26.0, 25.8, 25.7, 25.4, 25.0, 24.9 (11 t). For 24: 1H NMR (300 MHz, CDCl3): 6.81 (td, J = 15.7, 7.5 Hz, 1 H), 6.19 (dt, J = 15.7, 1.3 Hz, 1 H), 2.52-2.47 (m, 2 H), 2.30-2.23 (m, 2 H), 1.72-1.44 (m, 4H), 1.4-1.2 (m, 16 H). 13C NMR (75 MHz, CDCl3): 201.7 (s), 147.9, 130.7 (2 d), 40.0, 31.6, 26.9, 26.8, 26.7, 26.6, 26.5, 26.2, 26.0, 25.4, 25.2 (12 t). - Tetradecadienone 23 was found to be a naturally occurring compound in the defense secretions produced by soldier termites:
-
22a
Prestwich GD.Kaib M.Wood WF.Meinwald J. Tetrahedron Lett. 1975, 16: 4701 -
22b
Spanton SG.Prestwich GD. Tetrahedron 1982, 38: 1921 - For examples of (±)-muscone syntheses via enone 24, see:
-
23a
Stoll M. Chimia 1948, 2: 217 -
23b
Stoll M.Commarmont K. Helv. Chim. Acta 1948, 31: 554 -
23c
Mookherjee BD.Patel RR.Ledig WR. J. Org. Chem. 1971, 36: 4124 -
23d
Korzienowsky SH.Vanderbilt DP.Hendry LB. Org. Prep. Proced. Int. 1976, 8: 81 -
23e
Nokami J.Kusumoto Y.Jinnai K.Kawada M. Chem. Lett. 1977, 715 -
23f
Takahashi T.Nagashima T.Tsuij J. Tetrahedron Lett. 1981, 22: 1359 -
23g
Sakane S.Maruoka K.Yamamoto H. Tetrahedron Lett. 1983, 24: 943 -
23h
Asaoka M.Abe M.Takei H. Bull. Chem. Soc. Jpn. 1985, 58: 2145 -
23i
Kabbara J.Flemming S.Nickisch K.Neh H.Westermann J. Chem. Ber. 1994, 127: 1489 -
23k
See also ref. [7a]
- For asymmetric muscone syntheses from enone 24, see:
-
24a
Nelson KA.Mash EA. J. Org. Chem. 1986, 51: 2721 -
24b
Tanaka K.Matsui J.Suzuki H. J. Chem. Soc., Perkin Trans 1 1993, 153 ; and references therein -
24c
Tanaka K.Matsui J.Somemiya K.Suzuki H. Synlett 1994, 351 -
24d
Yamaguchi M.Shiraishi T.Hirama M. J. Org. Chem. 1996, 61: 3520 -
24e
Alexakis A.Benheim C.Fournioux X.Van den Heuvel A.Levêque J.-M.March S.Rosset S. Synlett 1999, 11: 1811 -
24f
Alexakis A. Chimia 2000, 54: 55 - 25
Hiyama T.Mishima T.Kitatani K.Nozaki H. Tetrahedron Lett. 1974, 3297
References
All mentioned tertiary cyclic vinyl substituted alcohols as well as the ethynyl substituted alcohols were synthesized from the corresponding cycloalkanones by addition of vinyl or ethynyl magnesium bromide according to the general procedure described in ref. 4.
18A mechanism via a free radical reaction is also involved in a recent two-carbon ring expansion procedure where a homolytic β-scission occurs in 1-alkenylcycloalkoxy radical systems, see ref. [6a] Selected characteristic data of enones 19. 1H NMR (300 MHz, CDCl3): 6.35 [dd, J = 17.5, 10, H-C(2)], 6.25 [dd, J = 17.5, 1.5, H trans -C(1)], 5.80 [dd, J = 10, 1.5, H cis -C(1)], 2.60 [t, J = 7.5, H2-C(4)]; 0.90-0.85 (t-type m), [H3C-(ω)]. 13C NMR (75 MHz): 201 [s, C(3)], 136.5 [d, C(2)], 127.5 [t, C(1)], 39.5 [t, C(4)], 13.5 [q, C(ω)].
19Addition of a ethynyl magnesium bromide solution in analogy to ref. [4]