Subscribe to RSS
DOI: 10.1055/s-2002-19761
Pyridazines. Part 26: [1] Efficient and Regioselective Pd-Catalysed Arylation of 4-Bromo-6-chloro-3-phenylpyridazine
Publication History
Publication Date:
02 February 2007 (online)
Abstract
The regioselective arylation at position 4 of 4-bromo-6-chloro-3-phenylpyridazine has been performed using a Suzuki cross-coupling reaction. This route allows access to a wide-ranging series of pharmacologically useful pyridazine derivatives and confirms the usefulness of chloropyridazines as a masking group for the carbonyl moiety in cross-coupling reactions involving 5-bromo-3(2H)-pyridazinones.
Key words
arylations - palladium - catalysis - pyridazine
- 1 For the previous paper in this series, see: Efficient and selective deprotection of phar-macologically useful 2-MOM-pyridazinones using Lewis acids in:
Sotelo E.Coelho A.Raviña E. Tetrahedron Lett. 2001. 43: p.8633 -
2a
Frank H.Heinisch G. In Pharmacologically Active Pyridazines Part 1, Progressing Medicinal ChemistryEllis GP.West GB. Elsevier; Amsterdam: 1990. p.271 -
2b
Frank H.Heinisch G. In Pharmacologically Active Pyridazines Part 2, Progress in Medicinal Chemistry Chap. 29:Ellis GP.Luscombe DK. Elsevier; Amsterdam: 1992. p.141 - 3
Rohr M.Toussaint D.Chayer S.Mann A.Suffer J.Wermuth WG. Heterocycles 1996, 43: 1459 - 4
Enguehard C.Hervet M.Allouchi H.Debouzy JC.Gueiffier A. Synthesis 2001, 4: 595 -
5a
Turck A.Mojovic L.Queguiner G. Bull. Soc. Fr. 1993, 130: 488 -
5b
Konno S.Sagi M.Siga F.Yamanaka H. Heterocycles 1992, 34: 225 -
6a
Draper TL.Bailey TR. J. Org. Chem. 1995, 60: 748 -
6b
Oshawa A.Abe Y.Igeta H. Chem. Pharm. Bull. 1980, 28: 3488 - 7
Guery S.Parrot I.Rival Y.Wermuth CG. Synthesis 2001, 5: 699 - 8
Krajsovszky G.Matyus P.Riedl Z.Csanyi D.Hajos G. Heterocycles 2001, 55: 1105 - 9
Li JJ.Gribble GW. Palladium in Heterocyclic Chemistry Elsevier; Amsterdam: 2000. p.3 - 10
Bessard Y.Roduit JP. Tetrahedron 1999, 55: 393 - 11
Minato A.Suzuki K.Tamao K.Kumada M. J. Chem. Soc., Chem. Commun. 1984, 511 - 12
Tilley JW.Zawoiski S. J. Org. Chem. 1988, 53: 386 -
13a
Komrlj J.Maes BUW.Lemière GLF.Haemers A. Synlett 2000, 11: 1581 -
13b
Maes BUW.Lémiere GLF.Domminisse R.Augusyns K.Haemers A. Tetrahedron 2000, 56: 1777 - 14
Parrot I.Rival Y.Wermuth CG. Synthesis 1999, 7: 1163 - 15
Trecourt F.Turck A.Plé N.Paris A.Quéguiner G. J. Heterocyclic Chem. 1995, 32: 1057 - 16
Brown DJ. In The Pyridazines I, Chemistry of Heterocyclic Compounds Vol. 56:Taylor EC.Wipf P. Wiley; New York: 2000. p.23 - 17
Estévez I.Coelho A.Raviña E. Synthesis 1999, 9: 1666 - 18
Coelho A.Sotelo E.Estevez I.Raviña E. Synthesis 2001, 6: 871 - 20
Suzuki A. In Recent Advances in the Cross-coupling Reactions of Organoboron Deri-vatives with Organic Electrophiles, Perspectives in Organopalladium Chemistry for the XXI CenturyTsuji J. Elsevier; Amsterdam: 1999. p.145 -
22a
Gronowitz S.Lawitz K. Chem. Scr. 1983, 22: 265 -
22b
Gronowitz S.Stevens MFG. J. Chem. Soc., Perkin Trans. 1 1994, 3311 - 28
Abdel-Motti FM.Abdel-Megeid FME.Zaki ME.Shamrokh AH. Egypt. J. Pharm. Sci. 1998, 38: 87 - 29
Meresz O.Foster-Verner PA. J. Chem. Soc., Chem. Commun. 1972, 16: 950
References
4-Bromo-6-chloro-3-phenylpyridazine 2: 89%, mp: 111-112 °C (dec.), iso-PrOH. IR (KBr): 1590, 1480 cm-1. 1H NMR (DMSO-d6, 300 MHz): 8.44 (s, 1 H, CH), 7.70 (m, 2 H, Aromatics), 7.54 (m, 3 H, Aromatics) ppm.
21Cross-coupling Reactions, General Procedure: 5-Bromo-3-chloro-6-phenylpyridazine 2 (0.25 g, 0.93 mmol) was mixed with the arylboronic acid (0.93 mmol), Pd(PPh3)4 (5 mg, 0.006 mmol) and Na2CO3 (0.49 g, 5.08 mmol) in 30 mL of a 3:1 mixture of DME-H2O. The mixture was flushed with argon for 5 min and then stirred and heated at reflux (oil bath 90 °C) under argon until the starting material had disappeared (8-12 h). The mixture was allowed to cool and concentrated to dryness under reduced pressure. The residue was extracted into CH2Cl2 (3 × 20 mL), dried (Na2SO4) and then purified by column chromatography on silica gel to afford the 6-chloropyridazines 3, which were recrystallised from the appropriate solvent (Table).
Selected physical and spectral data for compounds 3. 3a: 90%, mp: 111-112 °C (dec.), iso-PrOH. IR (KBr): 1563, 1092, 695 cm-1. 1H NMR (DMSO-d
6, 300 MHz): 8.61 (s, 1 H, CH), 8.23 (m, 2 H, Aromatics), 7.79 (m, 2 H, Aromatics), 7.57 (m, 6 H, Aromatics) ppm. 3b: 95%, mp: 126-127 °C, iso-PrOH. IR (KBr): 1559, 1089, 696 cm-1. 1H NMR (DMSO-d
6, 300 MHz): 8.54 (s, 1 H, CH), 8.14 (d, J = 8.0 Hz, 2 H, Aromatics), 7.76 (m, 2 H, Aromatics), 7.55 (m, 3 H, Aromatics), 7.37 (d, J = 8.0 Hz, 2 H, Aroma tics), 2.38 (s, 3 H, CH3) ppm. 3d: 95%, mp: 150-152 °C iso-PrOH. IR (KBr): 1560, 1090, 697 cm-1. 1H NMR (DMSO-d
6, 300 MHz): 8.39 (s, 1 H, CH), 8.08 (d, J = 8.8 Hz, 2 H, Aromatics), 7.61 (m, 2 H, Aromatics), 7.41 (m, 3 H, Aromatics), 6.97 (d, J = 8.8 Hz, 2 H, Aromatics), 3.70 (s, 3 H, OCH3) ppm.
3(2H)-Pyridazinones 4 were prepared heating at reflux 3a-f in neat acetic acid during 3-7 h. 4a: 86%, mp: 178.5-180.6 °C, Acetonitrile. IR (KBr): 3000, 1668, 1589cm-1. 1H NMR (DMSO-d
6, 300 MHz): 11.58 (bs, 1 H, NH), 7.38-7.20 (m, 10 H Aromatics), 7.01 (s, 1 H, H4) ppm. 4e: 84%, mp: 235.0-235.5 °C, iso-PrOH. IR (KBr): 3000, 1662, 1580 cm-1.
1H NMR (DMSO-d
6, 300 MHz): 12.05 (bs, 1H, NH), 7.48-7.33 (m, 7 H, 5 H Aromatics + 1 H furan + H4), 6.28 (dd,
J = 3.5, 1.8 Hz, 1 H, furan), 5.64 (d, J = 3.5 Hz, 1 H; furan) ppm.
Aminopyridazines 5 were prepared heating at reflux 3a-f in presence of the appropriate amine (3 equivalents) in ethanol (24-72 h). 3,4-Diphenyl-6-(2-methoxyethylamino)pyrid-azine 5a: 78%, (72 h) mp: 199-201 °C, iso-PrOH. IR (KBr): 3000, 1590 cm-1. 1H NMR (DMSO-d 6, 300 MHz): 7.69-7.21 (m, 10 H, Aromatics), 6.94 (s, 1 H, H4), 3.64 (t, J = 7.1 Hz, 2 H, CH2), 3.35 (s, 3 H, CH3), 3.29 (t, J = 7.1 Hz, 2 H, CH2) ppm.
25Hydrazinopyridazines 6 were prepared heating at reflux 3a-f in presence of 3 equivalents of hydrazine hydrate in ethanol (3-4 h). 3,4-Diphenyl-6-hydrazinopyridazine 6a: 89%, mp: 153-155 °C, iso-PrOH. [28] IR (KBr): 3500-300, 1576 cm-1. 1H NMR (CDCl3, 300 MHz): 8.12 (m, 3 H, Aromatics), 7.67 (m, 2 H, Aromatics), 7.54 (s, 1 H, CH), 7.51 (m, 6 H, Aromatics), 6.08 (2, 1 H, NH), 3.48 (s, 2 H, NH2) ppm.
26Pyridazines 7 were prepared by reductive dechlorination of 3a-f (HCOONH4/Pd-C, MeOH). 3,4-diphenylpyridazine 7a: 88%, mp: 106-107 °C, iso-PrOH. [29] IR (KBr): 1590 cm-1. 1H NMR (DMSO-d 6, 300 MHz): 9.21 (d, J = 5.2 Hz, 1 H, CH), 7.50 (d, J = 5.2 Hz, 1 H, CH), 7.46 (m, 10 H, Aromatics) ppm.
27Complete details of the synthesis and spectral characteristics of the compounds obtained will be published elsewhere in a full paper. All compounds gave satisfactory microanalytical (C, H, N ± 0.4%) and spectral data (1H, 13C, FTIR, MS). Yields given correspond to isolated pure compounds.