References
1 For the previous paper in this series, see: Efficient and selective deprotection of phar-macologically useful 2-MOM-pyridazinones using Lewis acids in: Sotelo E.
Coelho A.
Raviña E.
Tetrahedron Lett.
2001.
43:
p.8633
2a
Frank H.
Heinisch G. In
Pharmacologically Active Pyridazines Part 1, Progressing Medicinal Chemistry
Ellis GP.
West GB.
Elsevier;
Amsterdam:
1990.
p.271
2b
Frank H.
Heinisch G. In
Pharmacologically Active Pyridazines Part 2, Progress in Medicinal Chemistry
Chap. 29:
Ellis GP.
Luscombe DK.
Elsevier;
Amsterdam:
1992.
p.141
3
Rohr M.
Toussaint D.
Chayer S.
Mann A.
Suffer J.
Wermuth WG.
Heterocycles
1996,
43:
1459
4
Enguehard C.
Hervet M.
Allouchi H.
Debouzy JC.
Gueiffier A.
Synthesis
2001,
4:
595
5a
Turck A.
Mojovic L.
Queguiner G.
Bull. Soc. Fr.
1993,
130:
488
5b
Konno S.
Sagi M.
Siga F.
Yamanaka H.
Heterocycles
1992,
34:
225
6a
Draper TL.
Bailey TR.
J. Org. Chem.
1995,
60:
748
6b
Oshawa A.
Abe Y.
Igeta H.
Chem. Pharm. Bull.
1980,
28:
3488
7
Guery S.
Parrot I.
Rival Y.
Wermuth CG.
Synthesis
2001,
5:
699
8
Krajsovszky G.
Matyus P.
Riedl Z.
Csanyi D.
Hajos G.
Heterocycles
2001,
55:
1105
9
Li JJ.
Gribble GW.
Palladium in Heterocyclic Chemistry
Elsevier;
Amsterdam:
2000.
p.3
10
Bessard Y.
Roduit JP.
Tetrahedron
1999,
55:
393
11
Minato A.
Suzuki K.
Tamao K.
Kumada M.
J. Chem. Soc., Chem. Commun.
1984,
511
12
Tilley JW.
Zawoiski S.
J. Org. Chem.
1988,
53:
386
13a
Komrlj J.
Maes BUW.
Lemière GLF.
Haemers A.
Synlett
2000,
11:
1581
13b
Maes BUW.
Lémiere GLF.
Domminisse R.
Augusyns K.
Haemers A.
Tetrahedron
2000,
56:
1777
14
Parrot I.
Rival Y.
Wermuth CG.
Synthesis
1999,
7:
1163
15
Trecourt F.
Turck A.
Plé N.
Paris A.
Quéguiner G.
J. Heterocyclic Chem.
1995,
32:
1057
16
Brown DJ. In The Pyridazines I, Chemistry of Heterocyclic Compounds
Vol. 56:
Taylor EC.
Wipf P.
Wiley;
New York:
2000.
p.23
17
Estévez I.
Coelho A.
Raviña E.
Synthesis
1999,
9:
1666
18
Coelho A.
Sotelo E.
Estevez I.
Raviña E.
Synthesis
2001,
6:
871
19 4-Bromo-6-chloro-3-phenylpyridazine 2: 89%, mp: 111-112 °C (dec.), iso-PrOH. IR (KBr): 1590, 1480 cm-1. 1H NMR (DMSO-d6, 300 MHz): 8.44 (s, 1 H, CH), 7.70 (m, 2 H, Aromatics), 7.54 (m, 3 H, Aromatics) ppm.
20
Suzuki A. In
Recent Advances in the Cross-coupling Reactions of Organoboron Deri-vatives with Organic Electrophiles, Perspectives in Organopalladium Chemistry for the XXI Century
Tsuji J.
Elsevier;
Amsterdam:
1999.
p.145
21 Cross-coupling Reactions, General Procedure: 5-Bromo-3-chloro-6-phenylpyridazine 2 (0.25 g, 0.93 mmol) was mixed with the arylboronic acid (0.93 mmol), Pd(PPh3)4 (5 mg, 0.006 mmol) and Na2CO3 (0.49 g, 5.08 mmol) in 30 mL of a 3:1 mixture of DME-H2O. The mixture was flushed with argon for 5 min and then stirred and heated at reflux (oil bath 90 °C) under argon until the starting material had disappeared (8-12 h). The mixture was allowed to cool and concentrated to dryness under reduced pressure. The residue was extracted into CH2Cl2 (3 × 20 mL), dried (Na2SO4) and then purified by column chromatography on silica gel to afford the 6-chloropyridazines 3, which were recrystallised from the appropriate solvent (Table).
Selected physical and spectral data for compounds 3. 3a: 90%, mp: 111-112 °C (dec.), iso-PrOH. IR (KBr): 1563, 1092, 695 cm-1. 1H NMR (DMSO-d
6, 300 MHz): 8.61 (s, 1 H, CH), 8.23 (m, 2 H, Aromatics), 7.79 (m, 2 H, Aromatics), 7.57 (m, 6 H, Aromatics) ppm. 3b: 95%, mp: 126-127 °C, iso-PrOH. IR (KBr): 1559, 1089, 696 cm-1. 1H NMR (DMSO-d
6, 300 MHz): 8.54 (s, 1 H, CH), 8.14 (d, J = 8.0 Hz, 2 H, Aromatics), 7.76 (m, 2 H, Aromatics), 7.55 (m, 3 H, Aromatics), 7.37 (d, J = 8.0 Hz, 2 H, Aroma tics), 2.38 (s, 3 H, CH3) ppm. 3d: 95%, mp: 150-152 °C iso-PrOH. IR (KBr): 1560, 1090, 697 cm-1. 1H NMR (DMSO-d
6, 300 MHz): 8.39 (s, 1 H, CH), 8.08 (d, J = 8.8 Hz, 2 H, Aromatics), 7.61 (m, 2 H, Aromatics), 7.41 (m, 3 H, Aromatics), 6.97 (d, J = 8.8 Hz, 2 H, Aromatics), 3.70 (s, 3 H, OCH3) ppm.
22a
Gronowitz S.
Lawitz K.
Chem. Scr.
1983,
22:
265
22b
Gronowitz S.
Stevens MFG.
J. Chem. Soc., Perkin Trans. 1
1994,
3311
23 3(2H)-Pyridazinones 4 were prepared heating at reflux 3a-f in neat acetic acid during 3-7 h. 4a: 86%, mp: 178.5-180.6 °C, Acetonitrile. IR (KBr): 3000, 1668, 1589cm-1. 1H NMR (DMSO-d
6, 300 MHz): 11.58 (bs, 1 H, NH), 7.38-7.20 (m, 10 H Aromatics), 7.01 (s, 1 H, H4) ppm. 4e: 84%, mp: 235.0-235.5 °C, iso-PrOH. IR (KBr): 3000, 1662, 1580 cm-1.
1H NMR (DMSO-d
6, 300 MHz): 12.05 (bs, 1H, NH), 7.48-7.33 (m, 7 H, 5 H Aromatics + 1 H furan + H4), 6.28 (dd,
J = 3.5, 1.8 Hz, 1 H, furan), 5.64 (d, J = 3.5 Hz, 1 H; furan) ppm.
24 Aminopyridazines 5 were prepared heating at reflux 3a-f in presence of the appropriate amine (3 equivalents) in ethanol (24-72 h). 3,4-Diphenyl-6-(2-methoxyethylamino)pyrid-azine 5a: 78%, (72 h) mp: 199-201 °C, iso-PrOH. IR (KBr): 3000, 1590 cm-1. 1H NMR (DMSO-d
6, 300 MHz): 7.69-7.21 (m, 10 H, Aromatics), 6.94 (s, 1 H, H4), 3.64 (t, J = 7.1 Hz, 2 H, CH2), 3.35 (s, 3 H, CH3), 3.29 (t, J = 7.1 Hz, 2 H, CH2) ppm.
25 Hydrazinopyridazines 6 were prepared heating at reflux 3a-f in presence of 3 equivalents of hydrazine hydrate in ethanol (3-4 h). 3,4-Diphenyl-6-hydrazinopyridazine 6a: 89%, mp: 153-155 °C, iso-PrOH.
[28]
IR (KBr): 3500-300, 1576 cm-1. 1H NMR (CDCl3, 300 MHz): 8.12 (m, 3 H, Aromatics), 7.67 (m, 2 H, Aromatics), 7.54 (s, 1 H, CH), 7.51 (m, 6 H, Aromatics), 6.08 (2, 1 H, NH), 3.48 (s, 2 H, NH2) ppm.
26 Pyridazines 7 were prepared by reductive dechlorination of 3a-f (HCOONH4/Pd-C, MeOH). 3,4-diphenylpyridazine 7a: 88%, mp: 106-107 °C, iso-PrOH.
[29]
IR (KBr): 1590 cm-1. 1H NMR (DMSO-d
6, 300 MHz): 9.21 (d, J = 5.2 Hz, 1 H, CH), 7.50 (d, J = 5.2 Hz, 1 H, CH), 7.46 (m, 10 H, Aromatics) ppm.
27 Complete details of the synthesis and spectral characteristics of the compounds obtained will be published elsewhere in a full paper. All compounds gave satisfactory microanalytical (C, H, N ± 0.4%) and spectral data (1H, 13C, FTIR, MS). Yields given correspond to isolated pure compounds.
28
Abdel-Motti FM.
Abdel-Megeid FME.
Zaki ME.
Shamrokh AH.
Egypt. J. Pharm. Sci.
1998,
38:
87
29
Meresz O.
Foster-Verner PA.
J. Chem. Soc., Chem. Commun.
1972,
16:
950