Zusammenfassung
Das Immunsystem des Menschen besitzt mit den Toll-like-Rezeptoren (TLR) eine ontogenetisch sehr alte Familie von Rezeptoren, über die bereits die Fruchtfliege verfügt. Sie reagieren auf Signale von mikrobiellen Liganden. In dieser Arbeit zeigen wir, dass die Aktivierung von TLR2 zu einer Eliminierung des intrazellulären Bakteriums Mycobacterium (M.) tuberculosis auch in humanen Makrophagen führt. In Mausmakrophagen führt die Aktivierung von TLR2 durch bakterielle Lipoproteine zur Induktion eines Effektormechanismus, der durch Stickoxid-Radikale vermittelt wird. In humanen Monozyten und Alveolarmakrophagen hingegen ist das Abtöten von M. tuberculosis Stickoxid-unabhängig. Daher interagieren die TLR von Säugern ähnlich wie das Toll-Protein von Drosophila mit mikrobiellen Liganden und aktivieren am Ort der Infektion antimikrobielle Effektormechanismen.
Abstract
Drosophila, the toll gene controls a powerful innate defense system against bacteria and fungi. Conserved through evolution, the mammalian innate immune system retains a family of homologous Toll-like receptors (TLRs) that are activated by microbial ligands to release cytokines that instruct the adaptive immune responses. Here we show that TLR2 activation leads to killing of intracellular Mycobacterium (M.) tuberculosis in both mouse and human macrophages. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli. In human monocytes and alveolar macrophages, bacterial lipoproteins similarly activated TLR2 to kill intracellular M. tuberculosis, however by an antimicrobial pathway that is nitric oxide independent. TLR2+CD14+CD68+ macrophages were detected in human lesions of tuberculous lymphadenitis within granulomas and surrounding foci of necrosis. These data provide evidence that mammalian TLRs have retained not only the structural features of Drosophila Toll that allow them to respond to microbial ligands, but also the ability directly to activate antimicrobial effector pathways at the site of infection.
Literatur
1
Lemaitre B, Nicolas E, Michaut L, Reichhart J M, Hoffmann J A.
The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults.
Cell.
1996;
86
973-983
2
Lemaitre B, Reichhart J M, Hoffmann J A.
Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganismus.
Proc Natl Acad Sci U S A.
1997;
94
14614-14619
3
Hoffmann J A, Kafatos F C, Janeway C A, Ezekowitz R A.
Phylogenetic perspectives in innate immunity.
Science.
1999;
284
1313-1318
4
Medzhitov R, Preston-Hurlburt P, Janeway Jr C A.
A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.
Nature.
1997;
388
394-397
5
Kirschning C J, Wesche H, Merrill Ayres T, Rothe M.
Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide.
J Exp Med.
1998;
188
2091-2097
6
Poltorak A, He X, Smirnova I, Liu M Y, Huffel C V, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B.
Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in TIr4 gene.
Science.
1998;
282
2085-2088
7
Brightbill H D, Libraty D H, Krutzik S R, Yang R B, Belisle J T, Bleharski J R, Maitland M, Norgard M V, Plevy S E, Smale S T, Brennan P J, Bloom B R, Godowski P J, Modlin R L.
Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors.
Science.
1999;
285
732-736
8
Aliprantis A O, Yang R B, Mark M R, Suggett S, Devaux B, Radolf J D, Klimpel G R, Godowski P, Zychlinsky A.
Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2.
Science.
1999;
285
736-739
9
Underhill D M, Ozinsky A, Hajjar A M, Stevens A, Wilson C B, Bassetti M, Aderem A.
The toll-like receptor-2 is recruited to macrophage phagosomes and discriminates between pathogens.
Nature.
1999;
401
811-815
10
Stenger S, Mazzaccaro R J, Uyemura K, Cho S, Barnes P F, Rosat J P, Sette A, Brenner M B, Porcelli S A, Bloom B R, Modlin R L.
Differential effects of cytolytic T-cell subsets on intracellular infection.
Science.
1997;
276
1684-1687
11
Stenger S, Hanson D A, Teitelbaum R, Dewan P, Niazi K R, Froelich C J, Ganz T, Thoma-Uszynski S, Melian A, Bogdan C, Porcelli S A, Bloom B R, Krensky A M, Modlin R L.
An antimicrobial activity of cytolytic T-cells mediated by granulysin.
Science.
1998;
282
121-125
12
Jullien D, Sieling P A, Uyemura K, Mar N D, Rea T H, Modlin R L.
IL-15, an immunomodulator of T-cell responses in intracellular infection.
J Immunol.
1997;
158
800-806
13
Chan J, Xing Y, Magliozzo R S, Bloom B R.
Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages.
J Exp Med.
1992;
175
1111-1122
14
MacMicking J D, North R J, LaCourse R, Mudgett J S, Shah S K, Nathan C F.
Identification of nitric oxide synthase as a protective locus against tuberculosis.
Proc Natl Acad Sci U S A.
1997;
94
5243-5248
15
Vodovotz Y, Bogdan C, Paik J, Xie Q W, Nathan C.
Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta.
J Exp Med.
1993;
178
605-613
16
Stenger S, Solbach W, Rollinghoff M, Bogdan C.
Cytokine interactions in experimental cutaneous leishmaniasis. II. Endogenous tumor necrosis factor-alpha production by macrophages is induced by the synergistic action of inferferon (IFN)-gamma and interleukin (IL) 4 and accounts for the antiparasitic effect mediated by IFN-gamma and IL 4.
Eur J Immunol.
1991;
21
1669-1675
17
Hirsch C S, Ellner J J, Russell D G, Rich E A.
Complement receptor-mediated uptake and tumor necrosis factor-alpha- mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages.
J Immunol.
1994;
152
743-753
18
Engele M, Stößel E, Castiglione K, Schwerdtner N, Wagner M, Bölcskei P, Röllinghoff M, Stenger S.
Induction of Tumor Necrosis Factor in Human Alveolar Macrophages as a Potential Evasion Mechanism of Virulent Mycobacterium tuberculosis.
J Immunol.
2002;
in press
19
Nicholson S, Bonecini-Almeida M dG, Lapa e Silva J R, Nathan C, Xie Q W, Mumford R, Weidner J R, Calaycay J, Geng J, Boechat N. et al .
Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis.
J Exp Med.
1996;
183
2293-2302
PD Dr. med. S. Stenger
Institut für Klinische Mikrobiologie, Immunologie und Hygiene
Wasserturmstr. 3
91054 Erlangen
Email: steffen.stenger@mikrobio.med.uni-erlangen.de