Abstract
Ca oxalate crystal formation was examined in Pistia stratiotes L. leaves during excess Ca and Ca-deficient conditions. Pistia produces druse crystal idioblasts in the adaxial mesophyll and raphide idioblasts in the abaxial aerenchyma. Raphide crystals were previously found to grow bidirectionally, and here we show that Ca is incorporated along the entire surfaces of developing druse crystals, which are coated with membrane-bound microprojections. Leaves formed on plants grown on 0 Ca medium have fewer and smaller druse crystals than leaves formed under 5 mM Ca (“control”) conditions, while raphide crystal formation is completely inhibited. When plants were moved from 0 to 15 mM (“high”) Ca, the size and number of crystals in new leaves returned to (druse) or exceeded (raphide) control levels. High Ca also induced formation of druse, but not raphide, crystals in differentiating chlorenchyma cells. When plants were transferred from 15 mM Ca to 0 Ca, young druse crystals were preferentially partially dissolved. Oxalate oxidase, an enzyme that degrades oxalate, increased during Ca deficiency and was localized to the crystal surfaces. The more dynamic nature of druse crystals is not due to hydration form as both crystal types are shown to be monohydrate. Part of the difference may be because raphide idioblasts have developmental constraints that interfere with a more flexible response to changing Ca. These studies demonstrate that excess Ca can be stored as Ca oxalate, the Ca can be remobilized under certain conditions, and different forms of Ca oxalate have different roles in bulk Ca regulation.
Key words
Calcium - Calcium oxalate - Crystals -
Pistia stratiotes
- oxalate oxidase
References
01
Al-Rais, A. H.,, Myers, A.,, and Watson, L..
(1971);
The isolation and properties of oxalate crystals from plants.
Annals Botany.
35
1213-1218
02 Arnott, H. J., and Pautard, F. G. E.. (1970) Calcification in plants. Biological calcification; cellular and molecular aspects. Schraer, H., ed. New York; Appleton-Century-Crofts pp. 375-446
03
Assailly, A..
(1954);
Sur les rapports de l'oxalate de chaux et de l'amidon.
Compt. Rend. Acad. Sci. Ser. D Paris.
238
1902-1904
04
Borchert, R..
(1985);
Calcium-induced patterns of calcium-oxalate crystals in isolated leaflets of Gleditsia triacanthos L. and Albizia julibrissin Durazz.
Planta.
165
301-310
05
Borchert, R..
(1986);
Calcium acetate induces calcium uptake and formation of calcium-oxalate crystals in isolated leaflets of Gleditsia triacanthos L.
Planta.
168
571-578
06
Borchert, R..
(1990);
Ca2+ as developmental signal in the formation of Ca-oxalate crystal spacing patterns during leaf development in Carya ovata.
.
Planta.
182
339-347
07
Calmes, M. J..
(1969);
Contribution a l'etude du metabolisme de l'acide oxalique chez la Vigne vierge (Parthenocissus tricuspidata Planchon).
Compt. Rend. Acad. Sci., Ser. D.
269
704-707
08
Calmes, J., and Carles, J..
(1970);
Le repartition et l'evolution des cristaux d'oxalate de calcium dans les tissues de Vigne vierge au cours d'un cycle de vegetation.
Bull. Soc. Bot. Fr..
117
189-198
09
Foster, A. S..
(1956);
Plant idioblasts: remarkable examples of cell specialization.
Protoplasma.
46
184-193
10
Franceschi, V. R..
(1984);
Developmental features of calcium oxalate crystal sand deposition in Beta vulgaris L. leaves.
Protoplasma.
120
216-223
11
Franceschi, V. R..
(1987);
Oxalic acid metabolism and calcium oxalate formation in Lemna minor L.
Plant Cell Environ..
10
397-406
12
Franceschi, V. R..
(1989);
Calcium oxalate formation is a rapid and reversible process in Lemna minor L.
Protoplasma.
148
130-137
13
Franceschi, V. R., and Horner, H. T. Jr..
(1980);
Calcium oxalate crystals in plants.
Bot. Rev..
46
361-427
14 Franceschi, V. R., and Loewus, F. A.. (1995) Oxalate biosynthesis and function in plants and fungi. Calcium oxalate in biological systems. Khan, S. R., ed. Boca Raton; CRC Press, Inc. pp. 117-121
15
Franceschi, V. R.,, Li, L.,, Zhang, D.,, and Okita, T. O..
(1993);
Calsequestrin-like calcium binding protein is expressed in calcium accumulating cells of Pistia stratiotes.
.
Proc. Natl. Acad. Sci. USA.
90
6986-6990
16
Frank, E..
(1972);
The formation of crystal idioblasts in Canavalia ensiformis D. C. at different levels of calcium supply.
Z. Pflanzenphysiol..
67
350-358
17
Frey-Wyssling, A..
(1981);
Crystallography of the two hydrates of crystalline calcium oxalate in plants.
Amer. J. Bot..
68
130-141
18
Hepler, P. K., and Wayne, R. O..
(1985);
Calcium and plant development.
Ann. Rev. Plant Physiol..
36
397-439
19
Horner, H. T., and Wagner, B. L..
(1980);
The association of druse crystals with the developing stomium of Capsicum annum (Solanaceae) anthers.
Amer. J. Bot..
67
1347-1360
20 Horner, H. T., and Wagner, B. L.. (1995) Calcium oxalate formation in higher plants. Calcium Oxalate in Biological Systems. Khan, S. R., ed. Boca Raton; CRC Press pp. 53-72
21
Keates, S. E.,, Tarlyn, N. M.,, Loewus, F. A.,, and Franceschi, V. R..
(2000);
L-Ascorbic acid and L-galactose are sources for oxalic acid and calcium oxalate in Pistia stratiotes.
.
Phytochemistry.
53
433-440
22
Kirkby, E. A., and Pilbeam, D. J..
(1984);
Calcium as a plant nutrient.
Plant Cell Environ..
7
397-405
23
Klauer, S. F., and Franceschi, V. R..
(1996);
Accumulation of vegetative storage proteins in vacuoles of soybean leaf paraveinal mesophyll is mediated by the Golgi apparatus.
Protoplasma.
200
174-185
24
Kostman, T. A., and Franceschi, V. R..
(2000);
Cell and calcium oxalate crystal growth is coordinated to achieve high capacity calcium regulation in plants.
Protoplasma.
214
166-179
25
Kostman, T. A.,, Tarlyn, N. M.,, Loewus, F. A.,, and Franceschi, V. R..
(2001);
Biosynthesis of L-ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts.
Plant Physiol..
125
1-7
26
Kuballa, B.,, Lugnier, A. A. J.,, and Anton, R..
(1981);
Study of Dieffenbachia -induced edema in mouse and rat hindpaw: respective role of oxalate needles and trypsin-like protease.
Toxicol. Appl. Pharmacol..
58
441-451
27
Lane, B. G..
(1994);
Oxalate, germin, and the extracellular matrix of higher plants.
FASEB J..
8
294-301
28
Laemmli, U. K..
(1970);
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature.
227
680-685
29
Libert, B., and Franceschi, V. R..
(1987);
Oxalate in crop plants.
J. Agric.Food Chem..
35
926-938
30
Monje, P. V., and Baran, E. J..
(1996);
On the formation of weddellite in Cahmaecereus silvestrii, a Cactaceae from northern Argentina.
Z. Naturforsch..
51 c
426-428
31
Monje, P. V., and Baran, E. J..
(1997);
On the formation of whewellite in the Cactaceae species Opuntia microdasys.
.
Z. Naturforsch..
52 c
267-269
32
Rauber, A..
(1985);
Observations on the idioblasts of Dieffenbachia.
.
Clin. Toxicol..
23
79-80
33
Rivera, E. R., and Smith, B. N..
(1979);
Crystal morphology and 13 Carbon/12 Carbon composition of solid oxalate in cacti.
Plant Physiol..
64
966-970
34
Sakai, W. S.,, Hanson, M.,, and Jones, R. C..
(1972);
Raphides with barbs and grooves in Xanthosoma sagittifolium (Araceae).
Science.
178
314-315
35
Sakai, W. S.,, Shiroma, S. S.,, and Nagao, M. A..
(1984);
A study of raphide microstructure in relation to irritation.
SEM.
2
979-986
36
Schmidt, R. J., and Moult, S. P..
(1983);
The dermatitic properties of black bryony (Tamus communis L.).
Contact Derm..
9
390-396
37
Tarlyn, N. M.,, Kostman, T. A.,, Nakata, P. A.,, Keates, S. E.,, and Franceschi, V. R..
(1998);
Axenic culture of Pistia stratiotes for use in plant biochemical studies.
Aquatic Botany.
60
161-168
38
Towbin, H.,, Stahelin, T.,, and Gordon, J..
(1979);
Electrophorectic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.
Proc. Nat. Acad. Sci. USA.
76
4350-4354
39
Webb, M. A..
(1999);
Cell-mediated crystallization of calcium oxalate in plants.
Plant Cell.
11
751-761
40
Webb, M. A.,, Cavaletto, N. C.,, Carpita, N. C.,, Lopez, L. E.,, and Arnott, H. J..
(1995);
The intravacuolar organic matrix associated with calcium oxalate crystals in leaves of Vitis.
.
Plant Journal.
7
633-648
41
Zindler-Frank, E..
(1975);
On the formation of the pattern of crystal idioblasts in Canavalia ensiformis DC. VII. Calcium and oxalate content of the leaves in dependence of calcium nutrition.
Z. Pflanzenphysiol..
77
80-85
V. R. Franceschi
School of Biological Sciences Washington State University
Pullman WA 99164-4236 USA
eMail: vfrances@mail.wsu.edu
Section Editor: A. Läuchli