RSS-Feed abonnieren
DOI: 10.1055/s-2002-22720
Sodium Hypophosphite Decomplexation of Acetylenebiscobalthexacarbonyls to cis-Olefins
Publikationsverlauf
Publikationsdatum:
05. Februar 2007 (online)
Abstract
Reductive decomplexation of acetylenebiscobalthexa-carbonyl is best achieved with tri-n-butyltin hydride. Instead of this toxic reagent, sodium hypophosphite monohydrate has proved to be a safe, effective, and economical reagent for such a reductive decomplexation of biscobalthexacarbonyl acetylenes into the corresponding cis-olefins.
Key words
acetylenebiscobalthexacarbonyl - sodium hypophosphite - reductive decomplexation - Nicholas reaction - ciguatoxin
-
1a
Saha M.Baphy B.Nicholas KM. Tetrahedron Lett. 1986, 27: 915 -
1b
Harrington PJ. Transition Metals in Total Synthesis John Wiley; New York: 1990. p.241 -
1c
Jamison TF.Shambayati S.Crowe WE.Shreiber SL. J. Am. Chem. Soc. 1994, 116: 5055 -
1d
Mukai C.Kadota O.Hanaoka M. J. Org. Chem. 1995, 60: 5910 -
2a
Nicholas KM.Pettit R. Tetrahedron Lett. 1971, 3475 -
2b
Seyferth D.Nestle MO.Wehman AT. J. Am. Chem. Soc. 1975, 97: 7417 -
3a
Connor RE.Nicholas KM. J. Organomet. Chem. 1977, 125: C45 -
3b
Nicholas KM. Acc. Chem. Res. 1987, 20: 207 -
4a
Khand IU.Knox GR.Pauson PL.Watts WE.Foreman MI. J. Chem. Soc., Perkin Trans. 1 1973, 977 -
4b
Pauson PL. Tetrahedron 1985, 41: 5855 -
4c
Shore NE. In Comprehensive Organometallic Chemistry II Vol. 12:Hegedus LS. Pergamon Elsevier; Amsterdam: 1995. Chap 7.2. p.703 -
4d
Geis O.Schmalz H.-G. Angew. Chem. Int. Ed. 1998, 37: 911 -
5a
Shvo Y.Hazum EJ. J. Chem. Soc., Chem. Commun. 1974, 336 -
5b
Magnus P.Becker DP. J. Chem. Soc., Chem. Commun. 1985, 640 -
5c
Schreiber SL.Sammakia T.Crowe WE. J. Am. Chem. Soc. 1986, 108: 3128 -
5d
Davis DS.Shadinger SC. Tetrahedron Lett. 1999, 44: 7749 -
6a
Jones GB.Huber RS.Mathews JE. J. Chem. Soc., Chem. Commun. 1995, 1791 -
6b
Jones GB.Wright JM.Rush TM.Ploude GW.Kelton TF.Mathews JE.Huber RS.Davidson JP. J. Org. Chem. 1997, 62: 9379 -
7a
Nakamura T.Matsui T.Tanino K.Kuwajima I. J. Org. Chem. 1997, 62: 3032 -
7b
Iwasawa N.Satoh H. J. Am. Chem. Soc. 1999, 121: 7951 -
8a
Hirama M.Oishi T.Uehara H.Inoue M.Maruyama M.Oguri H.Satake M. Science 2001, 294: 1904 -
8b
Takakura H.Noguchi K.Sasaki M.Tachibana K. Angew. Chem. Int. Ed. 2001, 40: 1090 -
8c
Fujiwara K.Takaoka D.Kusumi K.Kawai K.Murai A. Synlett 2001, 691 -
8d
Eriksson L.Guy S.Perlmutter P. J. Org. Chem. 1999, 64: 8396 -
8e
Leeuwenburgh MA.Kulker C.Overkleeft HS.van der Marel GA.van Boom JH. Synlett 1999, 1945 -
8f
Ravelo JD.Regueiro A.Roddriguez E.Vera J.Martin JD. Tetrahedron Lett. 1996, 37: 2869 -
8g
Soler MA.Palazon JM.Martin VS. Tetrahedron Lett. 1993, 34: 5471; and references therein -
9a
Hosokawa S.Isobe M. Synlett 1995, 1179 -
9b
Hosokawa S.Isobe M. Synlett 1996, 351 -
9c
Hosokawa S.Isobe M. J. Org. Chem. 1999, 64: 37 -
9d
Saeeng R.Isobe M. Tetrahedron Lett. 1999, 40: 1911 -
9e
Saeeng R.Isobe M. Heterocycles 2001, 54: 789 -
9f
Kira K.Isobe M. Tetrahedron Lett. 2000, 41: 5951 -
9g
Liu T.-Z.Isobe M. Synlett 2000, 587 -
9h
Liu T.-Z.Li J.-M.Isobe M. Tetrahedron 2000, 56: 5391 -
9i
Kira K.Isobe M. Chem. Lett. 2001, 432 -
9j
Kira K.Isobe M. Tetrahedron Lett. 2001, 42: 2821 -
9k
Kira K.Hamajima A.Isobe M. Tetrahedron 2002, 58: 1875 -
9l
Liu T.-Z.Isobe M. Synlett 2000, 266 -
9m
Liu T.-Z.Li J.-M.Isobe M. Tetrahedron 2000, 56: 10209 -
10a
Scheuer PJ.Takahashi W.Tsutsumi J.Yoshida T. Science 1967, 155: 1267 -
10b
Murata M.Legurand AM.Ishibashi Y.Fukui M.Yasumoto T. J. Am. Chem. Soc. 1990, 112: 4380 -
10c
Satake M.Morohashi A.Oguri H.Oishi T.Hirama M.Harada N.Yasumoto T. J. Am. Chem. Soc. 1997, 119: 11325 -
10d
Yasumoto T. Chem. Rec. 2001, 1: 228 -
11a
Hosokawa S.Isobe M. Tetrahedron Lett. 1998, 39: 2609 -
11b
Isobe M.Nishizawa R.Hosokawa S.Nishikawa T. Chem. Commun. 1998, 2665 -
11c
Shibuya S.Isobe M. Tetrahedron 1998, 54: 6677 -
11d
Kira K.Isobe M. J. Org. Chem., Jpn. 2000, 58: 23 -
11e
Kira K.Isobe M. J. Org.Chem., Jpn. 2000, 58: 99 -
14a
Graham AE.Thomas AV.Yang RC. J. Org. Chem. 2000, 65: 2583 -
14b
Barton DH.Jang DO.Jaszberenyi JC. J. Org. Chem. 1993, 58: 6838 - 16
Isobe M.Takai S. J. Organomet. Chem. 1999, 589: 122 - 17
Syambayati S.Crowe WE.Schreiber SL. Tetrahedron Lett. 1990, 31: 5289
References
Aldrich, 500 g, $ 430 in Japan.
13WAKO, 500 g, $ 18 in Japan.
15A reductive decomplexation of 24 with n-Bu3SnH was successful to give 33, which was trans-olefin. A possible mechanism is shown below (Figure [2] ).
18Physical data for 29. IR (KBr): 3447, 2925, 2359, 2344, 2094, 2055, 2028, 1734, 1560, 1285, 1144 cm-1. 1H NMR (CDCl3, 400 MHz) δ 1.19 (9 H, s, -OPiv), 1.22 (9 H, s, -OPiv), 1.64 (1 H, dddd, J = 14.5, 9.0, 6.0, 5.0 Hz, H-14), 2.15 (1 H, dddd, J = 14.5, 7.5, 7.5, 2.5 Hz, H-14), 2.84 (1 H, br-s, -OH), 2.87 (1 H, dd, J = 15.5, 9.5 Hz, H-8), 2.94 (1 H, dd, J = 9.0, 9.0 Hz, H-12), 3.29 (1 H, ddd, J = 9.0, 9.0, 2.5 Hz, H-13), 3.35 (3 H, m, -OMe), 3.39 (1 H, ddd, J = 9.5, 9.0, 4.0 Hz, H-9), 3.47-3.60 (2 H, m, H-15), 3.52 (1 H, dd, J = 9.0, 9.0 Hz, H-10), 3.59 (3 H, m, -OMe), 3.59 (1 H, dd, J = 15.5, 4.0 Hz, H-8), 3.64 (1 H, dd, J = 9.0, 9.0 Hz, H-11), 4.09 (1 H, dd, J = 11.5, 7.0 Hz, H-1), 4.29 (1 H, dd, J = 11.5, 3.5 Hz, H-1), 5.06 (1 H, dd, J = 4.5, 1.5 Hz, H-5), 5.58 (1 H, ddd, J = 7.0, 6.5, 3.5 Hz, H-2), 5.86 (1 H, ddd, J = 15.5, 6.5, 1.5 Hz, H-3), 5.96 (1 H, ddd, J = 15.5, 4.5, 1.0 Hz, H-4). 13C NMR (CDCl3, 100 MHz) δ 27.09, 27.11, 29.70, 32.01, 38.67, 38.82, 38.87, 58.53, 60.45, 64.71, 68.95, 70.84, 74.95, 75.02, 77.50, 77.88, 81.10, 82.59, 87.47, 91.78, 99.87, 125.80, 131.89, 177.18, 178.07, 198.74, 199.23, 201.69. ESI Q-TOF MS calcd for C33H43Co2O15 [M + H]+ 797.127, found 797.128. [α]D 25 +170.0 (c 0.05, CHCl3).
19Physical data for 30. IR (KBr): 3448, 2962, 2925, 2360, 2344, 1734, 1718, 1282, 1144, 1108 cm-1. 1H NMR (CDCl3, 400 MHz) δ 1.18 (9 H, s, -OPiv), 1.21 (9 H, s, -OPiv), 1.64 (1 H, dddd, J = 14.0, 9.0, 5.5, 5.5 Hz, H-14), 2.12 (1 H, dddd, J = 14.0, 7.5, 7.5, 3.0 Hz, H-14), 2.32 (1 H, m, H-8), 2.58 (1 H, ddd, J = 15.5, 8.5, 3.5 Hz, H-8), 2.75 (1 H, br-s, -OH), 2.92 (1 H, dd, J = 9.0, 9.0 Hz, H-12), 3.12 (1 H, ddd, J = 10.5, 9.0, 3.5 Hz, H-9), 3.29 (1 H, m, H-13), 3.29 (1 H, dd, J = 9.0, 9.0 Hz, H-10), 3.33 (3 H, s, -OMe), 3.50 (1 H, dd, J = 7.5, 5.5 Hz, H-15), 3.52 (1 H, dd, J = 9.0, 7.5 Hz, H-15), 3.59 (3 H, s, -OMe), 3.64 (1 H, dd, J = 9.0, 9.0 Hz, H-11), 4.09 (1 H, dd, J = 11.5, 7.0 Hz, H-1), 4.27 (1 H, dd, J = 11.5, 3.5 Hz, H-1), 4.50-4.54 (1 H, m, H-5), 5.51 (1 H, ddd, J = 6.5, 6.0, 3.5 Hz, H-2), 5.72 (1 H, ddd, J = 15.5, 6.0, 1.5 Hz, H-3), 5.77 (1 H, ddd, J = 11.0, 4.5, 4.0 Hz, H-6), 5.85 (1 H, dddd, J = 11.0, 8.5, 3.5, 2.5 Hz, H-7), 5.88 (1 H, ddd, J = 15.5, 5.5, 1.5 Hz, H-4). 13C NMR (CDCl3, 100 MHz) δ 27.14, 29.69, 32.08, 33.78, 38.81, 58.52, 60.41, 64.61, 69.09, 70.92, 73.99, 75.39, 77.15, 83.36, 87.47, 125.69, 128.55, 133.76, 135.17, 177.28, 178.04. ESI Q-TOF MS calcd for C27H44NaO9 [M + Na]+ 535.288, found 535.289. [α]D 27 +60.7 (c 0.11, CHCl3).