References
<A NAME="RY01202ST-1A">1a </A>
Saha M.
Baphy B.
Nicholas KM.
Tetrahedron Lett.
1986,
27:
915
<A NAME="RY01202ST-1B">1b </A>
Harrington PJ.
Transition Metals in Total Synthesis
John Wiley;
New York:
1990.
p.241
<A NAME="RY01202ST-1C">1c </A>
Jamison TF.
Shambayati S.
Crowe WE.
Shreiber SL.
J. Am. Chem. Soc.
1994,
116:
5055
<A NAME="RY01202ST-1D">1d </A>
Mukai C.
Kadota O.
Hanaoka M.
J. Org. Chem.
1995,
60:
5910
<A NAME="RY01202ST-2A">2a </A>
Nicholas KM.
Pettit R.
Tetrahedron Lett.
1971,
3475
<A NAME="RY01202ST-2B">2b </A>
Seyferth D.
Nestle MO.
Wehman AT.
J. Am. Chem. Soc.
1975,
97:
7417
<A NAME="RY01202ST-3A">3a </A>
Connor RE.
Nicholas KM.
J. Organomet. Chem.
1977,
125:
C45
<A NAME="RY01202ST-3B">3b </A>
Nicholas KM.
Acc. Chem. Res.
1987,
20:
207
<A NAME="RY01202ST-4A">4a </A>
Khand IU.
Knox GR.
Pauson PL.
Watts WE.
Foreman MI.
J. Chem. Soc., Perkin Trans. 1
1973,
977
<A NAME="RY01202ST-4B">4b </A>
Pauson PL.
Tetrahedron
1985,
41:
5855
<A NAME="RY01202ST-4C">4c </A>
Shore NE. In Comprehensive Organometallic Chemistry II
Vol. 12:
Hegedus LS.
Pergamon Elsevier;
Amsterdam:
1995.
Chap 7.2.
p.703
<A NAME="RY01202ST-4D">4d </A>
Geis O.
Schmalz H.-G.
Angew. Chem. Int. Ed.
1998,
37:
911
<A NAME="RY01202ST-5A">5a </A>
Shvo Y.
Hazum EJ.
J. Chem. Soc., Chem. Commun.
1974,
336
<A NAME="RY01202ST-5B">5b </A>
Magnus P.
Becker DP.
J. Chem. Soc., Chem. Commun.
1985,
640
<A NAME="RY01202ST-5C">5c </A>
Schreiber SL.
Sammakia T.
Crowe WE.
J. Am. Chem. Soc.
1986,
108:
3128
<A NAME="RY01202ST-5D">5d </A>
Davis DS.
Shadinger SC.
Tetrahedron Lett.
1999,
44:
7749
<A NAME="RY01202ST-6A">6a </A>
Jones GB.
Huber RS.
Mathews JE.
J. Chem. Soc., Chem. Commun.
1995,
1791
<A NAME="RY01202ST-6B">6b </A>
Jones GB.
Wright JM.
Rush TM.
Ploude GW.
Kelton TF.
Mathews JE.
Huber RS.
Davidson JP.
J. Org. Chem.
1997,
62:
9379
<A NAME="RY01202ST-7A">7a </A>
Nakamura T.
Matsui T.
Tanino K.
Kuwajima I.
J. Org. Chem.
1997,
62:
3032
<A NAME="RY01202ST-7B">7b </A>
Iwasawa N.
Satoh H.
J. Am. Chem. Soc.
1999,
121:
7951
<A NAME="RY01202ST-8A">8a </A>
Hirama M.
Oishi T.
Uehara H.
Inoue M.
Maruyama M.
Oguri H.
Satake M.
Science
2001,
294:
1904
<A NAME="RY01202ST-8B">8b </A>
Takakura H.
Noguchi K.
Sasaki M.
Tachibana K.
Angew. Chem. Int. Ed.
2001,
40:
1090
<A NAME="RY01202ST-8C">8c </A>
Fujiwara K.
Takaoka D.
Kusumi K.
Kawai K.
Murai A.
Synlett
2001,
691
<A NAME="RY01202ST-8D">8d </A>
Eriksson L.
Guy S.
Perlmutter P.
J. Org. Chem.
1999,
64:
8396
<A NAME="RY01202ST-8E">8e </A>
Leeuwenburgh MA.
Kulker C.
Overkleeft HS.
van der Marel GA.
van Boom JH.
Synlett
1999,
1945
<A NAME="RY01202ST-8F">8f </A>
Ravelo JD.
Regueiro A.
Roddriguez E.
Vera J.
Martin JD.
Tetrahedron Lett.
1996,
37:
2869
<A NAME="RY01202ST-8G">8g </A>
Soler MA.
Palazon JM.
Martin VS.
Tetrahedron Lett.
1993,
34:
5471; and references therein
<A NAME="RY01202ST-9A">9a </A>
Hosokawa S.
Isobe M.
Synlett
1995,
1179
<A NAME="RY01202ST-9B">9b </A>
Hosokawa S.
Isobe M.
Synlett
1996,
351
<A NAME="RY01202ST-9C">9c </A>
Hosokawa S.
Isobe M.
J. Org. Chem.
1999,
64:
37
<A NAME="RY01202ST-9D">9d </A>
Saeeng R.
Isobe M.
Tetrahedron Lett.
1999,
40:
1911
<A NAME="RY01202ST-9E">9e </A>
Saeeng R.
Isobe M.
Heterocycles
2001,
54:
789
<A NAME="RY01202ST-9F">9f </A>
Kira K.
Isobe M.
Tetrahedron Lett.
2000,
41:
5951
<A NAME="RY01202ST-9G">9g </A>
Liu T.-Z.
Isobe M.
Synlett
2000,
587
<A NAME="RY01202ST-9H">9h </A>
Liu T.-Z.
Li J.-M.
Isobe M.
Tetrahedron
2000,
56:
5391
<A NAME="RY01202ST-9I">9i </A>
Kira K.
Isobe M.
Chem. Lett.
2001,
432
<A NAME="RY01202ST-9J">9j </A>
Kira K.
Isobe M.
Tetrahedron Lett.
2001,
42:
2821
<A NAME="RY01202ST-9K">9k </A>
Kira K.
Hamajima A.
Isobe M.
Tetrahedron
2002,
58:
1875
<A NAME="RY01202ST-9L">9l </A>
Liu T.-Z.
Isobe M.
Synlett
2000,
266
<A NAME="RY01202ST-9M">9m </A>
Liu T.-Z.
Li J.-M.
Isobe M.
Tetrahedron
2000,
56:
10209
<A NAME="RY01202ST-10A">10a </A>
Scheuer PJ.
Takahashi W.
Tsutsumi J.
Yoshida T.
Science
1967,
155:
1267
<A NAME="RY01202ST-10B">10b </A>
Murata M.
Legurand AM.
Ishibashi Y.
Fukui M.
Yasumoto T.
J. Am. Chem. Soc.
1990,
112:
4380
<A NAME="RY01202ST-10C">10c </A>
Satake M.
Morohashi A.
Oguri H.
Oishi T.
Hirama M.
Harada N.
Yasumoto T.
J. Am. Chem. Soc.
1997,
119:
11325
<A NAME="RY01202ST-10D">10d </A>
Yasumoto T.
Chem. Rec.
2001,
1:
228
<A NAME="RY01202ST-11A">11a </A>
Hosokawa S.
Isobe M.
Tetrahedron Lett.
1998,
39:
2609
<A NAME="RY01202ST-11B">11b </A>
Isobe M.
Nishizawa R.
Hosokawa S.
Nishikawa T.
Chem. Commun.
1998,
2665
<A NAME="RY01202ST-11C">11c </A>
Shibuya S.
Isobe M.
Tetrahedron
1998,
54:
6677
<A NAME="RY01202ST-11D">11d </A>
Kira K.
Isobe M.
J. Org. Chem., Jpn.
2000,
58:
23
<A NAME="RY01202ST-11E">11e </A>
Kira K.
Isobe M.
J. Org.Chem., Jpn.
2000,
58:
99
<A NAME="RY01202ST-12">12 </A>
Aldrich, 500 g, $ 430 in Japan.
<A NAME="RY01202ST-13">13 </A>
WAKO, 500 g, $ 18 in Japan.
<A NAME="RY01202ST-14A">14a </A>
Graham AE.
Thomas AV.
Yang RC.
J. Org. Chem.
2000,
65:
2583
<A NAME="RY01202ST-14B">14b </A>
Barton DH.
Jang DO.
Jaszberenyi JC.
J. Org. Chem.
1993,
58:
6838
<A NAME="RY01202ST-15">15 </A>
A reductive decomplexation of 24 with n -Bu3 SnH was successful to give 33 , which was trans -olefin. A possible mechanism is shown below (Figure
[2 ]
).
Figure 2
<A NAME="RY01202ST-16">16 </A>
Isobe M.
Takai S.
J. Organomet. Chem.
1999,
589:
122
<A NAME="RY01202ST-17">17 </A>
Syambayati S.
Crowe WE.
Schreiber SL.
Tetrahedron Lett.
1990,
31:
5289
<A NAME="RY01202ST-18">18 </A>
Physical data for 29 . IR (KBr): 3447, 2925, 2359, 2344, 2094, 2055, 2028, 1734, 1560, 1285, 1144 cm-1 . 1 H NMR (CDCl3 , 400 MHz) δ 1.19 (9 H, s, -OPiv ), 1.22 (9 H, s, -OPiv ), 1.64 (1 H, dddd, J = 14.5, 9.0, 6.0, 5.0 Hz, H-14), 2.15 (1 H, dddd, J = 14.5, 7.5, 7.5, 2.5 Hz, H-14), 2.84 (1 H, br-s, -OH ), 2.87 (1 H, dd, J = 15.5, 9.5 Hz, H-8), 2.94 (1 H, dd, J = 9.0, 9.0 Hz, H-12), 3.29 (1 H, ddd, J = 9.0, 9.0, 2.5 Hz, H-13), 3.35 (3 H, m, -OMe ), 3.39 (1 H, ddd, J = 9.5, 9.0, 4.0 Hz, H-9), 3.47-3.60 (2 H, m, H-15), 3.52 (1 H, dd, J = 9.0, 9.0 Hz, H-10), 3.59 (3 H, m, -OMe ), 3.59 (1 H, dd, J = 15.5, 4.0 Hz, H-8), 3.64 (1 H, dd, J = 9.0, 9.0 Hz, H-11), 4.09 (1 H, dd, J = 11.5, 7.0 Hz, H-1), 4.29 (1 H, dd, J = 11.5, 3.5 Hz, H-1), 5.06 (1 H, dd, J = 4.5, 1.5 Hz, H-5), 5.58 (1 H, ddd, J = 7.0, 6.5, 3.5 Hz, H-2), 5.86 (1 H, ddd, J = 15.5, 6.5, 1.5 Hz, H-3), 5.96 (1 H, ddd, J = 15.5, 4.5, 1.0 Hz, H-4). 13 C NMR (CDCl3 , 100 MHz) δ 27.09, 27.11, 29.70, 32.01, 38.67, 38.82, 38.87, 58.53, 60.45, 64.71,
68.95, 70.84, 74.95, 75.02, 77.50, 77.88, 81.10, 82.59, 87.47, 91.78, 99.87, 125.80,
131.89, 177.18, 178.07, 198.74, 199.23, 201.69. ESI Q-TOF MS calcd for C33 H43 Co2 O15 [M + H]+ 797.127, found 797.128. [α]D
25 +170.0 (c 0.05, CHCl3 ).
<A NAME="RY01202ST-19">19 </A>
Physical data for 30 . IR (KBr): 3448, 2962, 2925, 2360, 2344, 1734, 1718, 1282, 1144, 1108 cm-1 . 1 H NMR (CDCl3 , 400 MHz) δ 1.18 (9 H, s, -OPiv ), 1.21 (9 H, s, -OPiv ), 1.64 (1 H, dddd, J = 14.0, 9.0, 5.5, 5.5 Hz, H-14), 2.12 (1 H, dddd, J = 14.0, 7.5, 7.5, 3.0 Hz, H-14), 2.32 (1 H, m, H-8), 2.58 (1 H, ddd, J = 15.5, 8.5, 3.5 Hz, H-8), 2.75 (1 H, br-s, -OH ), 2.92 (1 H, dd, J = 9.0, 9.0 Hz, H-12), 3.12 (1 H, ddd, J = 10.5, 9.0, 3.5 Hz, H-9), 3.29 (1 H, m, H-13), 3.29 (1 H, dd, J = 9.0, 9.0 Hz, H-10), 3.33 (3 H, s, -OMe ), 3.50 (1 H, dd, J = 7.5, 5.5 Hz, H-15), 3.52 (1 H, dd, J = 9.0, 7.5 Hz, H-15), 3.59 (3 H, s, -OMe ), 3.64 (1 H, dd, J = 9.0, 9.0 Hz, H-11), 4.09 (1 H, dd, J = 11.5, 7.0 Hz, H-1), 4.27 (1 H, dd, J = 11.5, 3.5 Hz, H-1), 4.50-4.54 (1 H, m, H-5), 5.51 (1 H, ddd, J = 6.5, 6.0, 3.5 Hz, H-2), 5.72 (1 H, ddd, J = 15.5, 6.0, 1.5 Hz, H-3), 5.77 (1 H, ddd, J = 11.0, 4.5, 4.0 Hz, H-6), 5.85 (1 H, dddd, J = 11.0, 8.5, 3.5, 2.5 Hz, H-7), 5.88 (1 H, ddd, J = 15.5, 5.5, 1.5 Hz, H-4). 13 C NMR (CDCl3 , 100 MHz) δ 27.14, 29.69, 32.08, 33.78, 38.81, 58.52, 60.41, 64.61, 69.09, 70.92,
73.99, 75.39, 77.15, 83.36, 87.47, 125.69, 128.55, 133.76, 135.17, 177.28, 178.04.
ESI Q-TOF MS calcd for C27 H44 NaO9 [M + Na]+ 535.288, found 535.289. [α]D
27 +60.7 (c 0.11, CHCl3 ).