Subscribe to RSS
DOI: 10.1055/s-2002-23535
Asymmetric Wittig Type Reactions
Publication History
Publication Date:
02 April 2002 (online)
Abstract
The Wittig reaction and related methods for synthesis of C=C double bonds belong to the standard repertoire of the synthetic chemist. Studies of asymmetric versions of these reactions have been increasing in recent years and applications of such processes to complex molecule synthesis have begun to emerge. In this review, we will emphasise the recent advances in developing methods and synthetic applications of these reactions, but earlier results will be covered as well to place the recent results in context.
-
1 Introduction
-
2 Reactions with Achiral Monocarbonyl Substrates
-
2.1 Reactions with Symmetrically Substituted Monoketones
-
2.2 Synthesis of Chiral Allenes from Ketenes or Acid Halides
-
3 Reactions with Chiral, Nonracemic Monoketones
-
4 Kinetic Resolution
-
4.1 Resolution of Racemic Monocarbonyl Compounds
-
4.2 Resolution of Racemic Wittig Reagents
-
5 Dynamic Resolution
-
6 Other Strategies Based on Resolution of Enantiomers
-
6.1 Parallel Kinetic Resolution
-
6.2 Enantioconvergent Synthesis by Sequential Asymmetric HWE Reaction and Palladium-Catalyzed Nucleophilic Allylic Substitution
-
7 Desymmetrization of Prochiral Dicarbonyl Substrates
-
8 Future Perspectives, Concluding Remarks
Key words
asymmetric synthesis - asymmetric Wittig reactions - kinetic resolution - enantioconvergent synthesis - desymmetrization
-
2a
Rein T.Reiser O. Acta Chem. Scand. 1996, 50: 369 -
2b
Li A.-H.Dai W.-M.Aggarwal VK. Chem. Rev. 1997, 97: 2341 -
2c
Bennani YL.Hanessian S. Chem. Rev. 1997, 97: 3161 -
2d
Nicolaou KC.Härter MW.Gunzner JL.Nadin A. Liebigs Ann. Recl. 1997, 1283 -
2e
Wiemer DF. Tetrahedron 1997, 53: 16609 -
2f
Tanaka K.Fuji K. J. Synth. Org. Chem. Jpn. 1998, 56: 521 -
2g
Kolodiazhnyi OI. Tetrahedron: Asymmetry 1998, 9: 1279 -
2h
Tomioka K.Hasegawa M. J. Synth. Org. Chem. Jpn. 2000, 58: 848 - 3
Maryanoff BE.Reitz AB. Chem. Rev. 1989, 89: 863 - 4
Amadji M.Vadecard J.Cahard D.Duhamel L.Duhamel P.Plaquevent J.-C. J. Org. Chem. 1998, 63: 5541 ; see also ref.33 -
5a
Johnson CR.Meanwell NA. J. Am. Chem. Soc. 1981, 103: 7667 -
5b
Erdelmeier I.Gais H.-J.Lindner HJ. Angew. Chem., Int. Ed. Engl. 1986, 25: 935 - 6
Solladié G.Zimmerman R.Bartsch R. Synthesis 1985, 662 -
7a
Komatsu N.Matsunaga S.Sugita T.Uemura S. J. Am. Chem. Soc. 1993, 115: 5847 -
7b
Komatsu N.Murakami T.Nishibayashi Y.Sugita T.Uemura S. J. Org. Chem. 1993, 58: 3697 -
7c
Nishibayashi Y.Singh JD.Uemura S. Tetrahedron Lett. 1994, 35: 3115 -
7d
Nishibayashi Y.Singh JD.Fukuzawa S.-I.Uemura S. J. Org. Chem. 1995, 60: 4114 -
8a
Fiaud JC.Legros JY. Tetrahedron Lett. 1988, 29: 2959 -
8b
Fiaud JC.Legros JY. J. Organomet. Chem. 1989, 370: 383 -
8c
Legros JY.Fiaud JC. Tetrahedron 1994, 50: 465 -
9a
Harmat NJS.Warren S. Tetrahedron Lett. 1990, 31: 2743 -
9b
Clayden J.Warren S. Angew. Chem., Int. Ed. Engl. 1996, 35: 241 - 10
Tömösközi I.Janszó G. Chem. Ind. (London) 1962, 2085 -
12a
Bestmann HJ.Lienert J. Angew. Chem., Int. Ed. Engl. 1969, 8: 763 -
12b
Bestmann HJ.Heid E.Ryschka W.Lienert J. Liebigs Ann. Chem. 1974, 1684 - 13
Bestmann HJ.Lienert J. Chem.-Ztg. 1970, 94: 487 -
14a
Hanessian S.Delorme D.Beaudoin S.Leblanc Y. J. Am. Chem. Soc. 1984, 106: 5754 -
14b
Hanessian S.Beaudoin S. Tetrahedron Lett. 1992, 33: 7655 -
14c
Hanessian S.Beaudoin S. Tetrahedron Lett. 1992, 33: 7659 -
15a
Lemieux RP.Schuster GB. J. Org. Chem. 1993, 58: 100 -
15b
Zhang Y.Schuster GB. J. Org. Chem. 1994, 59: 1855 -
15c
Suarez M.Schuster GB. J. Am. Chem. Soc. 1995, 117: 6732 -
16a
Gais H.-J.Schmiedl G.Ball WA.Bund J.Hellmann G.Erdelmeier I. Tetrahedron Lett. 1988, 29: 1773 -
16b
Gais H.-J.Schmiedl G.Ossenkamp RKL. Liebigs Ann. Recl. 1997, 2419 - 17
Rehwinkel H.Skupsch J.Vorbrüggen H. Tetrahedron Lett. 1988, 29: 1775 - 18
Takahashi T.Matsui M.Maeno N.Koizumi T.Shiro M. Heterocycles 1990, 30: 353 - 19
Toda F.Akai H. J. Org. Chem. 1990, 55: 3446 -
20a
Denmark SE.Chen C.-T. J. Am. Chem. Soc. 1992, 114: 10674 -
20b
Denmark S.Rivera I. J. Org. Chem. 1994, 59: 6887 - 21
Furuta T.Iwamura M. J. Chem. Soc., Chem. Commun. 1994, 2167 - 22
Abiko A.Masamune S. Tetrahedron Lett. 1996, 37: 1077 - 23
Kumamoto T.Koga K. Chem. Pharm. Bull. 1997, 45: 753 - 24
Mizuno M.Fujii K.Tomioka K. Angew. Chem. Int. Ed. 1998, 37: 515 - 25
Sano S. Yakugaku Zasshi 2000, 120: 432 - 26
Arai S.Hamaguchi S.Shioiri T. Tetrahedron Lett. 1998, 39: 2997 - 27
Dai W.-M.Wu J.Huang X. Tetrahedron: Asymmetry 1997, 8: 1979 - 29
Bestmann HJ.Tömösközi I. Tetrahedron Lett. 1964, 1293 -
30a
Musierowicz S.Wroblewski AE.Krawczyk H. Tetrahedron Lett. 1975, 437 -
30b
Musierowicz S.Wroblewski AE. Tetrahedron 1980, 36: 1375 - 31
Tanaka K.Otsubo K.Fuji K. Tetrahedron Lett. 1996, 37: 3735 - 32
Masamune S.Choy W.Petersen JS.Sita LR. Angew. Chem., Int. Ed. Engl. 1985, 24: 1 - 33
Vaulont I.Gais H.-J.Reuter N.Schmitz E.Ossenkamp RKL. Eur. J. Org. Chem. 1998, 805 -
34a
Evans DA.Carter PH.Carreira EM.Prunet JA.Charette AB.Lautens M. Angew. Chem. Int. Ed. 1998, 37: 2354 -
34b
Evans DA.Carter PH.Carreira EM.Charette AB.Prunet JA.Lautens M. J. Am. Chem. Soc. 1999, 121: 7540 - 35
Ohmori K.Ogawa Y.Obitsu T.Ishikawa Y.Nishiyama S.Yamamura S. Angew. Chem. Int. Ed. 2000, 39: 2290 - 36
Tanaka K.Ohta Y.Fuji K.Taga T. Tetrahedron Lett. 1993, 34: 4071 ; this reagent was first introduced within the context of desymmetrization of a meso-diketone (Section 7) -
37a
Kagan HB.Fiaud JC. Top. Stereochem. 1988, 18: 249 -
37b See also:
Kagan HB. Tetrahedron 2001, 57: 2449 - 38
Johnson CR.Elliott RC.Meanwell NA. Tetrahedron Lett. 1982, 23: 5005 - 41
Rein T.Kann N.Kreuder R.Gangloff B.Reiser O. Angew. Chem. Int. Ed. Engl. 1994, 33: 556 - 43
Rein T.Anvelt J.Soone A.Kreuder R.Wulff C.Reiser O. Tetrahedron Lett. 1995, 36: 2303 - 44
Mendlik MT.Cottard M.Rein T.Helquist P. Tetrahedron Lett. 1997, 38: 6375 - 45
Kreuder R.Rein T.Reiser O. Tetrahedron Lett. 1997, 38: 9035 - 47 For a review of different models used for rationalizing the stereoselectivity of such reactions, see:
Mengel A.Reiser O. Chem. Rev. 1999, 99: 1191 -
48a
Norrby P.-O.Brandt P.Rein T. J. Org. Chem. 1999, 64: 5845 -
48b For recent computational studies of the parent HWE reaction, see:
Brandt P.Norrby P.-O.Martin I.Rein T. J. Org. Chem. 1998, 63: 1280 -
48c See also:
Ando K. J. Org. Chem. 1999, 64: 6815 - For exceptions, see:
-
49a
Ref. [21] Table 2, entry 1.
-
49b
Ref. [45] Table 2, entry 12.
- 50
Tanaka K.Watanabe T.Shimamoto K.-Y.Sahakitpichan P.Fuji K. Tetrahedron Lett. 1999, 40: 6599 - 51
Dai W.-M.Lau CW. Tetrahedron Lett. 2001, 42: 2541 - 52
Bestmann HJ.Tömösközi I. Tetrahedron 1968, 24: 3299 - 54
Pinsard P.Lellouche J.-P.Beaucourt J.-P.Grée R. Tetrahedron Lett. 1990, 31: 1137 -
55a
Noyori R.Tokunaga M.Kitamura M. Bull. Chem. Soc. Jpn. 1995, 68: 36 -
55b
Ward RS. Tetrahedron: Asymmetry 1995, 6: 1475 -
55c
Caddick S.Jenkins K. Chem. Soc. Rev. 1996, 25: 447 - 56
Narasaka K.Hidai E.Hayashi Y.Gras J.-L. J. Chem. Soc., Chem. Commun. 1993, 102 - 57
Rein T.Kreuder R.von Zezschwitz P.Wulff C.Reiser O. Angew. Chem., Int. Ed. Engl. 1995, 34: 1023 - 59
Gante J. Angew. Chem., Int. Ed. Engl. 1994, 33: 1699 ; and references therein -
60a
Vedejs E.Chen X. J. Am. Chem. Soc. 1997, 119: 2584 -
60b
Bertozzi F.Crotti P.Macchia F.Pineschi M.Feringa BL. Angew. Chem. Int. Ed. 2001, 40: 930 ; and references therein - 61
Pedersen TM.Jensen JF.Humble RE.Rein T.Tanner D.Bodmann K.Reiser O. Org. Lett. 2000, 2: 535 - 62
Pedersen TM.Hansen EL.Rein T.Kane J.Helquist P.Norrby P.-O.Tanner D. J. Am. Chem. Soc. 2001, 123: 9738 - 64
Schreiber SS.Schreiber TS.Smith DB. J. Am. Chem. Soc. 1987, 109: 1525 -
65a
Trost BM.Curran DP. J. Am. Chem. Soc. 1980, 102: 5699 -
65b
Trost BM.Curran DP. Tetrahedron Lett. 1981, 22: 4929 - 66 Later research indicates that the addition step is irreversible also for stabilized ylides, see:
Vedejs E.Peterson MJ. Top. Stereochem. 1994, 21: 1 - 67
Tanaka K.Watanabe T.Ohta Y.Fuji K. Tetrahedron Lett. 1997, 38: 8943 -
68a
Kann N.Rein T. J. Org. Chem. 1993, 58: 3802 -
68b
Tullis JS.Vares L.Kann N.Norrby P.-O.Rein T. J. Org. Chem. 1998, 63: 8284 -
68c
Rein T.Vares L.Kawasaki I.Pedersen TM.Norrby P.-O.Brandt P.Tanner D. Phosphorus, Sulfur, and Silicon 1999, 144-146: 169 -
69a
Vares L.Rein T. Org. Lett. 2000, 2: 2611 -
69b
Vares, L.; Rein, T., manuscript in preparation.
- 70
Mandai T.Kaihara Y.Tsuji J. J. Org. Chem. 1994, 59: 5847
References
Present address.
11Later results have cast some doubt on the levels of asymmetric induction reported in this paper; see ref. [14a]
28The structure of the alkyl group in the phosphoryl unit was not specified in the original article.
39The stoichiometry of the reaction, i.e. the ratio of 63:64, was not reported.
40The yields given are based on the Wittig type reagent as limiting reactant; 2 equivalents of the substrate were used.
42The descriptors R and S refer to the stereocenter originating from the substrate.
46Note that the chiral reagents 14b and 25 all contain the same enantiomer of the chiral auxiliary.
53The absolute configuration of the product was only tentatively assigned.
58This can be explained by the fact that the slower reacting enantiomer is continuously racemized and thus not accumulated as in an ordinary kinetic resolution.
63This is of course primarily an issue in intermolecular reactions, where the functional groups involved in the reaction can be present in different amounts.