Abstract
The Wittig reaction and related methods for synthesis of C=C double bonds belong to
the standard repertoire of the synthetic chemist. Studies of asymmetric versions of
these reactions have been increasing in recent years and applications of such processes
to complex molecule synthesis have begun to emerge. In this review, we will emphasise
the recent advances in developing methods and synthetic applications of these reactions,
but earlier results will be covered as well to place the recent results in context.
1 Introduction
2 Reactions with Achiral Monocarbonyl Substrates
2.1 Reactions with Symmetrically Substituted Monoketones
2.2 Synthesis of Chiral Allenes from Ketenes or Acid Halides
3 Reactions with Chiral, Nonracemic Monoketones
4 Kinetic Resolution
4.1 Resolution of Racemic Monocarbonyl Compounds
4.2 Resolution of Racemic Wittig Reagents
5 Dynamic Resolution
6 Other Strategies Based on Resolution of Enantiomers
6.1 Parallel Kinetic Resolution
6.2 Enantioconvergent Synthesis by Sequential Asymmetric HWE Reaction and Palladium-Catalyzed
Nucleophilic Allylic Substitution
7 Desymmetrization of Prochiral Dicarbonyl Substrates
8 Future Perspectives, Concluding Remarks
Key words
asymmetric synthesis - asymmetric Wittig reactions - kinetic resolution - enantioconvergent
synthesis - desymmetrization
References <A NAME="RE06201SS-1">1 </A>
Present address.
<A NAME="RE06201SS-2A">2a </A>
Rein T.
Reiser O.
Acta Chem. Scand.
1996,
50:
369
<A NAME="RE06201SS-2B">2b </A>
Li A.-H.
Dai W.-M.
Aggarwal VK.
Chem. Rev.
1997,
97:
2341
<A NAME="RE06201SS-2C">2c </A>
Bennani YL.
Hanessian S.
Chem. Rev.
1997,
97:
3161
<A NAME="RE06201SS-2D">2d </A>
Nicolaou KC.
Härter MW.
Gunzner JL.
Nadin A.
Liebigs Ann. Recl.
1997,
1283
<A NAME="RE06201SS-2E">2e </A>
Wiemer DF.
Tetrahedron
1997,
53:
16609
<A NAME="RE06201SS-2F">2f </A>
Tanaka K.
Fuji K.
J. Synth. Org. Chem. Jpn.
1998,
56:
521
<A NAME="RE06201SS-2G">2g </A>
Kolodiazhnyi OI.
Tetrahedron: Asymmetry
1998,
9:
1279
<A NAME="RE06201SS-2H">2h </A>
Tomioka K.
Hasegawa M.
J. Synth. Org. Chem. Jpn.
2000,
58:
848
<A NAME="RE06201SS-3">3 </A>
Maryanoff BE.
Reitz AB.
Chem. Rev.
1989,
89:
863
<A NAME="RE06201SS-4">4 </A>
Amadji M.
Vadecard J.
Cahard D.
Duhamel L.
Duhamel P.
Plaquevent J.-C.
J. Org. Chem.
1998,
63:
5541 ; see also ref.33
<A NAME="RE06201SS-5A">5a </A>
Johnson CR.
Meanwell NA.
J. Am. Chem. Soc.
1981,
103:
7667
<A NAME="RE06201SS-5B">5b </A>
Erdelmeier I.
Gais H.-J.
Lindner HJ.
Angew. Chem., Int. Ed. Engl.
1986,
25:
935
<A NAME="RE06201SS-6">6 </A>
Solladié G.
Zimmerman R.
Bartsch R.
Synthesis
1985,
662
<A NAME="RE06201SS-7A">7a </A>
Komatsu N.
Matsunaga S.
Sugita T.
Uemura S.
J. Am. Chem. Soc.
1993,
115:
5847
<A NAME="RE06201SS-7B">7b </A>
Komatsu N.
Murakami T.
Nishibayashi Y.
Sugita T.
Uemura S.
J. Org. Chem.
1993,
58:
3697
<A NAME="RE06201SS-7C">7c </A>
Nishibayashi Y.
Singh JD.
Uemura S.
Tetrahedron Lett.
1994,
35:
3115
<A NAME="RE06201SS-7D">7d </A>
Nishibayashi Y.
Singh JD.
Fukuzawa S.-I.
Uemura S.
J. Org. Chem.
1995,
60:
4114
<A NAME="RE06201SS-8A">8a </A>
Fiaud JC.
Legros JY.
Tetrahedron Lett.
1988,
29:
2959
<A NAME="RE06201SS-8B">8b </A>
Fiaud JC.
Legros JY.
J. Organomet. Chem.
1989,
370:
383
<A NAME="RE06201SS-8C">8c </A>
Legros JY.
Fiaud JC.
Tetrahedron
1994,
50:
465
<A NAME="RE06201SS-9A">9a </A>
Harmat NJS.
Warren S.
Tetrahedron Lett.
1990,
31:
2743
<A NAME="RE06201SS-9B">9b </A>
Clayden J.
Warren S.
Angew. Chem., Int. Ed. Engl.
1996,
35:
241
<A NAME="RE06201SS-10">10 </A>
Tömösközi I.
Janszó G.
Chem. Ind. (London)
1962,
2085
<A NAME="RE06201SS-11">11 </A>
Later results have cast some doubt on the levels of asymmetric induction reported
in this paper; see ref.
[14a ]
<A NAME="RE06201SS-12A">12a </A>
Bestmann HJ.
Lienert J.
Angew. Chem., Int. Ed. Engl.
1969,
8:
763
<A NAME="RE06201SS-12B">12b </A>
Bestmann HJ.
Heid E.
Ryschka W.
Lienert J.
Liebigs Ann. Chem.
1974,
1684
<A NAME="RE06201SS-13">13 </A>
Bestmann HJ.
Lienert J.
Chem.-Ztg.
1970,
94:
487
<A NAME="RE06201SS-14A">14a </A>
Hanessian S.
Delorme D.
Beaudoin S.
Leblanc Y.
J. Am. Chem. Soc.
1984,
106:
5754
<A NAME="RE06201SS-14B">14b </A>
Hanessian S.
Beaudoin S.
Tetrahedron Lett.
1992,
33:
7655
<A NAME="RE06201SS-14C">14c </A>
Hanessian S.
Beaudoin S.
Tetrahedron Lett.
1992,
33:
7659
<A NAME="RE06201SS-15A">15a </A>
Lemieux RP.
Schuster GB.
J. Org. Chem.
1993,
58:
100
<A NAME="RE06201SS-15B">15b </A>
Zhang Y.
Schuster GB.
J. Org. Chem.
1994,
59:
1855
<A NAME="RE06201SS-15C">15c </A>
Suarez M.
Schuster GB.
J. Am. Chem. Soc.
1995,
117:
6732
<A NAME="RE06201SS-16A">16a </A>
Gais H.-J.
Schmiedl G.
Ball WA.
Bund J.
Hellmann G.
Erdelmeier I.
Tetrahedron Lett.
1988,
29:
1773
<A NAME="RE06201SS-16B">16b </A>
Gais H.-J.
Schmiedl G.
Ossenkamp RKL.
Liebigs Ann. Recl.
1997,
2419
<A NAME="RE06201SS-17">17 </A>
Rehwinkel H.
Skupsch J.
Vorbrüggen H.
Tetrahedron Lett.
1988,
29:
1775
<A NAME="RE06201SS-18">18 </A>
Takahashi T.
Matsui M.
Maeno N.
Koizumi T.
Shiro M.
Heterocycles
1990,
30:
353
<A NAME="RE06201SS-19">19 </A>
Toda F.
Akai H.
J. Org. Chem.
1990,
55:
3446
<A NAME="RE06201SS-20A">20a </A>
Denmark SE.
Chen C.-T.
J. Am. Chem. Soc.
1992,
114:
10674
<A NAME="RE06201SS-20B">20b </A>
Denmark S.
Rivera I.
J. Org. Chem.
1994,
59:
6887
<A NAME="RE06201SS-21">21 </A>
Furuta T.
Iwamura M.
J. Chem. Soc., Chem. Commun.
1994,
2167
<A NAME="RE06201SS-22">22 </A>
Abiko A.
Masamune S.
Tetrahedron Lett.
1996,
37:
1077
<A NAME="RE06201SS-23">23 </A>
Kumamoto T.
Koga K.
Chem. Pharm. Bull.
1997,
45:
753
<A NAME="RE06201SS-24">24 </A>
Mizuno M.
Fujii K.
Tomioka K.
Angew. Chem. Int. Ed.
1998,
37:
515
<A NAME="RE06201SS-25">25 </A>
Sano S.
Yakugaku Zasshi
2000,
120:
432
<A NAME="RE06201SS-26">26 </A>
Arai S.
Hamaguchi S.
Shioiri T.
Tetrahedron Lett.
1998,
39:
2997
<A NAME="RE06201SS-27">27 </A>
Dai W.-M.
Wu J.
Huang X.
Tetrahedron: Asymmetry
1997,
8:
1979
<A NAME="RE06201SS-28">28 </A>
The structure of the alkyl group in the phosphoryl unit was not specified in the original
article.
<A NAME="RE06201SS-29">29 </A>
Bestmann HJ.
Tömösközi I.
Tetrahedron Lett.
1964,
1293
<A NAME="RE06201SS-30A">30a </A>
Musierowicz S.
Wroblewski AE.
Krawczyk H.
Tetrahedron Lett.
1975,
437
<A NAME="RE06201SS-30B">30b </A>
Musierowicz S.
Wroblewski AE.
Tetrahedron
1980,
36:
1375
<A NAME="RE06201SS-31">31 </A>
Tanaka K.
Otsubo K.
Fuji K.
Tetrahedron Lett.
1996,
37:
3735
<A NAME="RE06201SS-32">32 </A>
Masamune S.
Choy W.
Petersen JS.
Sita LR.
Angew. Chem., Int. Ed. Engl.
1985,
24:
1
<A NAME="RE06201SS-33">33 </A>
Vaulont I.
Gais H.-J.
Reuter N.
Schmitz E.
Ossenkamp RKL.
Eur. J. Org. Chem.
1998,
805
<A NAME="RE06201SS-34A">34a </A>
Evans DA.
Carter PH.
Carreira EM.
Prunet JA.
Charette AB.
Lautens M.
Angew. Chem. Int. Ed.
1998,
37:
2354
<A NAME="RE06201SS-34B">34b </A>
Evans DA.
Carter PH.
Carreira EM.
Charette AB.
Prunet JA.
Lautens M.
J. Am. Chem. Soc.
1999,
121:
7540
<A NAME="RE06201SS-35">35 </A>
Ohmori K.
Ogawa Y.
Obitsu T.
Ishikawa Y.
Nishiyama S.
Yamamura S.
Angew. Chem. Int. Ed.
2000,
39:
2290
<A NAME="RE06201SS-36">36 </A>
Tanaka K.
Ohta Y.
Fuji K.
Taga T.
Tetrahedron Lett.
1993,
34:
4071 ; this reagent was first introduced within the context of desymmetrization of
a meso -diketone (Section 7)
<A NAME="RE06201SS-37A">37a </A>
Kagan HB.
Fiaud JC.
Top. Stereochem.
1988,
18:
249
<A NAME="RE06201SS-37B">37b </A> See also:
Kagan HB.
Tetrahedron
2001,
57:
2449
<A NAME="RE06201SS-38">38 </A>
Johnson CR.
Elliott RC.
Meanwell NA.
Tetrahedron Lett.
1982,
23:
5005
<A NAME="RE06201SS-39">39 </A>
The stoichiometry of the reaction, i.e. the ratio of 63 :64 , was not reported.
<A NAME="RE06201SS-40">40 </A>
The yields given are based on the Wittig type reagent as limiting reactant; 2 equivalents
of the substrate were used.
<A NAME="RE06201SS-41">41 </A>
Rein T.
Kann N.
Kreuder R.
Gangloff B.
Reiser O.
Angew. Chem. Int. Ed. Engl.
1994,
33:
556
<A NAME="RE06201SS-42">42 </A>
The descriptors R and S refer to the stereocenter originating from the substrate.
<A NAME="RE06201SS-43">43 </A>
Rein T.
Anvelt J.
Soone A.
Kreuder R.
Wulff C.
Reiser O.
Tetrahedron Lett.
1995,
36:
2303
<A NAME="RE06201SS-44">44 </A>
Mendlik MT.
Cottard M.
Rein T.
Helquist P.
Tetrahedron Lett.
1997,
38:
6375
<A NAME="RE06201SS-45">45 </A>
Kreuder R.
Rein T.
Reiser O.
Tetrahedron Lett.
1997,
38:
9035
<A NAME="RE06201SS-46">46 </A>
Note that the chiral reagents 14b and 25 all contain the same enantiomer of the chiral auxiliary.
<A NAME="RE06201SS-47">47 </A> For a review of different models used for rationalizing the stereoselectivity
of such reactions, see:
Mengel A.
Reiser O.
Chem. Rev.
1999,
99:
1191
<A NAME="RE06201SS-48A">48a </A>
Norrby P.-O.
Brandt P.
Rein T.
J. Org. Chem.
1999,
64:
5845
<A NAME="RE06201SS-48B">48b </A> For recent computational studies of the parent HWE reaction, see:
Brandt P.
Norrby P.-O.
Martin I.
Rein T.
J. Org. Chem.
1998,
63:
1280
<A NAME="RE06201SS-48C">48c </A> See also:
Ando K.
J. Org. Chem.
1999,
64:
6815
For exceptions, see:
<A NAME="RE06201SS-49A">49a </A>
Ref.
[21 ]
Table 2, entry 1.
<A NAME="RE06201SS-49B">49b </A>
Ref.
[45 ]
Table 2, entry 12.
<A NAME="RE06201SS-50">50 </A>
Tanaka K.
Watanabe T.
Shimamoto K.-Y.
Sahakitpichan P.
Fuji K.
Tetrahedron Lett.
1999,
40:
6599
<A NAME="RE06201SS-51">51 </A>
Dai W.-M.
Lau CW.
Tetrahedron Lett.
2001,
42:
2541
<A NAME="RE06201SS-52">52 </A>
Bestmann HJ.
Tömösközi I.
Tetrahedron
1968,
24:
3299
<A NAME="RE06201SS-53">53 </A>
The absolute configuration of the product was only tentatively assigned.
<A NAME="RE06201SS-54">54 </A>
Pinsard P.
Lellouche J.-P.
Beaucourt J.-P.
Grée R.
Tetrahedron Lett.
1990,
31:
1137
<A NAME="RE06201SS-55A">55a </A>
Noyori R.
Tokunaga M.
Kitamura M.
Bull. Chem. Soc. Jpn.
1995,
68:
36
<A NAME="RE06201SS-55B">55b </A>
Ward RS.
Tetrahedron: Asymmetry
1995,
6:
1475
<A NAME="RE06201SS-55C">55c </A>
Caddick S.
Jenkins K.
Chem. Soc. Rev.
1996,
25:
447
<A NAME="RE06201SS-56">56 </A>
Narasaka K.
Hidai E.
Hayashi Y.
Gras J.-L.
J. Chem. Soc., Chem. Commun.
1993,
102
<A NAME="RE06201SS-57">57 </A>
Rein T.
Kreuder R.
von Zezschwitz P.
Wulff C.
Reiser O.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1023
<A NAME="RE06201SS-58">58 </A>
This can be explained by the fact that the slower reacting enantiomer is continuously
racemized and thus not accumulated as in an ordinary kinetic resolution.
<A NAME="RE06201SS-59">59 </A>
Gante J.
Angew. Chem., Int. Ed. Engl.
1994,
33:
1699 ; and references therein
<A NAME="RE06201SS-60A">60a </A>
Vedejs E.
Chen X.
J. Am. Chem. Soc.
1997,
119:
2584
<A NAME="RE06201SS-60B">60b </A>
Bertozzi F.
Crotti P.
Macchia F.
Pineschi M.
Feringa BL.
Angew. Chem. Int. Ed.
2001,
40:
930 ; and references therein
<A NAME="RE06201SS-61">61 </A>
Pedersen TM.
Jensen JF.
Humble RE.
Rein T.
Tanner D.
Bodmann K.
Reiser O.
Org. Lett.
2000,
2:
535
<A NAME="RE06201SS-62">62 </A>
Pedersen TM.
Hansen EL.
Rein T.
Kane J.
Helquist P.
Norrby P.-O.
Tanner D.
J. Am. Chem. Soc.
2001,
123:
9738
<A NAME="RE06201SS-63">63 </A>
This is of course primarily an issue in intermolecular reactions, where the functional
groups involved in the reaction can be present in different amounts.
<A NAME="RE06201SS-64">64 </A>
Schreiber SS.
Schreiber TS.
Smith DB.
J. Am. Chem. Soc.
1987,
109:
1525
<A NAME="RE06201SS-65A">65a </A>
Trost BM.
Curran DP.
J. Am. Chem. Soc.
1980,
102:
5699
<A NAME="RE06201SS-65B">65b </A>
Trost BM.
Curran DP.
Tetrahedron Lett.
1981,
22:
4929
<A NAME="RE06201SS-66">66 </A> Later research indicates that the addition step is irreversible also for stabilized
ylides, see:
Vedejs E.
Peterson MJ.
Top. Stereochem.
1994,
21:
1
<A NAME="RE06201SS-67">67 </A>
Tanaka K.
Watanabe T.
Ohta Y.
Fuji K.
Tetrahedron Lett.
1997,
38:
8943
<A NAME="RE06201SS-68A">68a </A>
Kann N.
Rein T.
J. Org. Chem.
1993,
58:
3802
<A NAME="RE06201SS-68B">68b </A>
Tullis JS.
Vares L.
Kann N.
Norrby P.-O.
Rein T.
J. Org. Chem.
1998,
63:
8284
<A NAME="RE06201SS-68C">68c </A>
Rein T.
Vares L.
Kawasaki I.
Pedersen TM.
Norrby P.-O.
Brandt P.
Tanner D.
Phosphorus, Sulfur, and Silicon
1999,
144-146:
169
<A NAME="RE06201SS-69A">69a </A>
Vares L.
Rein T.
Org. Lett.
2000,
2:
2611
<A NAME="RE06201SS-69B">69b </A>
Vares, L.; Rein, T., manuscript in preparation.
<A NAME="RE06201SS-70">70 </A>
Mandai T.
Kaihara Y.
Tsuji J.
J. Org. Chem.
1994,
59:
5847