Abstract
The Wittig reaction and related methods for synthesis of C=C double bonds belong to the standard repertoire of the synthetic chemist. Studies of asymmetric versions of these reactions have been increasing in recent years and applications of such processes to complex molecule synthesis have begun to emerge. In this review, we will emphasise the recent advances in developing methods and synthetic applications of these reactions, but earlier results will be covered as well to place the recent results in context.
1 Introduction
2 Reactions with Achiral Monocarbonyl Substrates
2.1 Reactions with Symmetrically Substituted Monoketones
2.2 Synthesis of Chiral Allenes from Ketenes or Acid Halides
3 Reactions with Chiral, Nonracemic Monoketones
4 Kinetic Resolution
4.1 Resolution of Racemic Monocarbonyl Compounds
4.2 Resolution of Racemic Wittig Reagents
5 Dynamic Resolution
6 Other Strategies Based on Resolution of Enantiomers
6.1 Parallel Kinetic Resolution
6.2 Enantioconvergent Synthesis by Sequential Asymmetric HWE Reaction and Palladium-Catalyzed Nucleophilic Allylic Substitution
7 Desymmetrization of Prochiral Dicarbonyl Substrates
8 Future Perspectives, Concluding Remarks
Key words
asymmetric synthesis - asymmetric Wittig reactions - kinetic resolution - enantioconvergent synthesis - desymmetrization
References 1 Present address.
2a
Rein T.
Reiser O.
Acta Chem. Scand.
1996,
50:
369
2b
Li A.-H.
Dai W.-M.
Aggarwal VK.
Chem. Rev.
1997,
97:
2341
2c
Bennani YL.
Hanessian S.
Chem. Rev.
1997,
97:
3161
2d
Nicolaou KC.
Härter MW.
Gunzner JL.
Nadin A.
Liebigs Ann. Recl.
1997,
1283
2e
Wiemer DF.
Tetrahedron
1997,
53:
16609
2f
Tanaka K.
Fuji K.
J. Synth. Org. Chem. Jpn.
1998,
56:
521
2g
Kolodiazhnyi OI.
Tetrahedron: Asymmetry
1998,
9:
1279
2h
Tomioka K.
Hasegawa M.
J. Synth. Org. Chem. Jpn.
2000,
58:
848
3
Maryanoff BE.
Reitz AB.
Chem. Rev.
1989,
89:
863
4
Amadji M.
Vadecard J.
Cahard D.
Duhamel L.
Duhamel P.
Plaquevent J.-C.
J. Org. Chem.
1998,
63:
5541 ; see also ref.33
5a
Johnson CR.
Meanwell NA.
J. Am. Chem. Soc.
1981,
103:
7667
5b
Erdelmeier I.
Gais H.-J.
Lindner HJ.
Angew. Chem., Int. Ed. Engl.
1986,
25:
935
6
Solladié G.
Zimmerman R.
Bartsch R.
Synthesis
1985,
662
7a
Komatsu N.
Matsunaga S.
Sugita T.
Uemura S.
J. Am. Chem. Soc.
1993,
115:
5847
7b
Komatsu N.
Murakami T.
Nishibayashi Y.
Sugita T.
Uemura S.
J. Org. Chem.
1993,
58:
3697
7c
Nishibayashi Y.
Singh JD.
Uemura S.
Tetrahedron Lett.
1994,
35:
3115
7d
Nishibayashi Y.
Singh JD.
Fukuzawa S.-I.
Uemura S.
J. Org. Chem.
1995,
60:
4114
8a
Fiaud JC.
Legros JY.
Tetrahedron Lett.
1988,
29:
2959
8b
Fiaud JC.
Legros JY.
J. Organomet. Chem.
1989,
370:
383
8c
Legros JY.
Fiaud JC.
Tetrahedron
1994,
50:
465
9a
Harmat NJS.
Warren S.
Tetrahedron Lett.
1990,
31:
2743
9b
Clayden J.
Warren S.
Angew. Chem., Int. Ed. Engl.
1996,
35:
241
10
Tömösközi I.
Janszó G.
Chem. Ind. (London)
1962,
2085
11 Later results have cast some doubt on the levels of asymmetric induction reported in this paper; see ref.
[14a ]
12a
Bestmann HJ.
Lienert J.
Angew. Chem., Int. Ed. Engl.
1969,
8:
763
12b
Bestmann HJ.
Heid E.
Ryschka W.
Lienert J.
Liebigs Ann. Chem.
1974,
1684
13
Bestmann HJ.
Lienert J.
Chem.-Ztg.
1970,
94:
487
14a
Hanessian S.
Delorme D.
Beaudoin S.
Leblanc Y.
J. Am. Chem. Soc.
1984,
106:
5754
14b
Hanessian S.
Beaudoin S.
Tetrahedron Lett.
1992,
33:
7655
14c
Hanessian S.
Beaudoin S.
Tetrahedron Lett.
1992,
33:
7659
15a
Lemieux RP.
Schuster GB.
J. Org. Chem.
1993,
58:
100
15b
Zhang Y.
Schuster GB.
J. Org. Chem.
1994,
59:
1855
15c
Suarez M.
Schuster GB.
J. Am. Chem. Soc.
1995,
117:
6732
16a
Gais H.-J.
Schmiedl G.
Ball WA.
Bund J.
Hellmann G.
Erdelmeier I.
Tetrahedron Lett.
1988,
29:
1773
16b
Gais H.-J.
Schmiedl G.
Ossenkamp RKL.
Liebigs Ann. Recl.
1997,
2419
17
Rehwinkel H.
Skupsch J.
Vorbrüggen H.
Tetrahedron Lett.
1988,
29:
1775
18
Takahashi T.
Matsui M.
Maeno N.
Koizumi T.
Shiro M.
Heterocycles
1990,
30:
353
19
Toda F.
Akai H.
J. Org. Chem.
1990,
55:
3446
20a
Denmark SE.
Chen C.-T.
J. Am. Chem. Soc.
1992,
114:
10674
20b
Denmark S.
Rivera I.
J. Org. Chem.
1994,
59:
6887
21
Furuta T.
Iwamura M.
J. Chem. Soc., Chem. Commun.
1994,
2167
22
Abiko A.
Masamune S.
Tetrahedron Lett.
1996,
37:
1077
23
Kumamoto T.
Koga K.
Chem. Pharm. Bull.
1997,
45:
753
24
Mizuno M.
Fujii K.
Tomioka K.
Angew. Chem. Int. Ed.
1998,
37:
515
25
Sano S.
Yakugaku Zasshi
2000,
120:
432
26
Arai S.
Hamaguchi S.
Shioiri T.
Tetrahedron Lett.
1998,
39:
2997
27
Dai W.-M.
Wu J.
Huang X.
Tetrahedron: Asymmetry
1997,
8:
1979
28 The structure of the alkyl group in the phosphoryl unit was not specified in the original article.
29
Bestmann HJ.
Tömösközi I.
Tetrahedron Lett.
1964,
1293
30a
Musierowicz S.
Wroblewski AE.
Krawczyk H.
Tetrahedron Lett.
1975,
437
30b
Musierowicz S.
Wroblewski AE.
Tetrahedron
1980,
36:
1375
31
Tanaka K.
Otsubo K.
Fuji K.
Tetrahedron Lett.
1996,
37:
3735
32
Masamune S.
Choy W.
Petersen JS.
Sita LR.
Angew. Chem., Int. Ed. Engl.
1985,
24:
1
33
Vaulont I.
Gais H.-J.
Reuter N.
Schmitz E.
Ossenkamp RKL.
Eur. J. Org. Chem.
1998,
805
34a
Evans DA.
Carter PH.
Carreira EM.
Prunet JA.
Charette AB.
Lautens M.
Angew. Chem. Int. Ed.
1998,
37:
2354
34b
Evans DA.
Carter PH.
Carreira EM.
Charette AB.
Prunet JA.
Lautens M.
J. Am. Chem. Soc.
1999,
121:
7540
35
Ohmori K.
Ogawa Y.
Obitsu T.
Ishikawa Y.
Nishiyama S.
Yamamura S.
Angew. Chem. Int. Ed.
2000,
39:
2290
36
Tanaka K.
Ohta Y.
Fuji K.
Taga T.
Tetrahedron Lett.
1993,
34:
4071 ; this reagent was first introduced within the context of desymmetrization of a meso -diketone (Section 7)
37a
Kagan HB.
Fiaud JC.
Top. Stereochem.
1988,
18:
249
37b See also: Kagan HB.
Tetrahedron
2001,
57:
2449
38
Johnson CR.
Elliott RC.
Meanwell NA.
Tetrahedron Lett.
1982,
23:
5005
39 The stoichiometry of the reaction, i.e. the ratio of 63 :64 , was not reported.
40 The yields given are based on the Wittig type reagent as limiting reactant; 2 equivalents of the substrate were used.
41
Rein T.
Kann N.
Kreuder R.
Gangloff B.
Reiser O.
Angew. Chem. Int. Ed. Engl.
1994,
33:
556
42 The descriptors R and S refer to the stereocenter originating from the substrate.
43
Rein T.
Anvelt J.
Soone A.
Kreuder R.
Wulff C.
Reiser O.
Tetrahedron Lett.
1995,
36:
2303
44
Mendlik MT.
Cottard M.
Rein T.
Helquist P.
Tetrahedron Lett.
1997,
38:
6375
45
Kreuder R.
Rein T.
Reiser O.
Tetrahedron Lett.
1997,
38:
9035
46 Note that the chiral reagents 14b and 25 all contain the same enantiomer of the chiral auxiliary.
47 For a review of different models used for rationalizing the stereoselectivity of such reactions, see: Mengel A.
Reiser O.
Chem. Rev.
1999,
99:
1191
48a
Norrby P.-O.
Brandt P.
Rein T.
J. Org. Chem.
1999,
64:
5845
48b For recent computational studies of the parent HWE reaction, see: Brandt P.
Norrby P.-O.
Martin I.
Rein T.
J. Org. Chem.
1998,
63:
1280
48c See also: Ando K.
J. Org. Chem.
1999,
64:
6815
For exceptions, see:
49a Ref.
[21 ]
Table 2, entry 1.
49b Ref.
[45 ]
Table 2, entry 12.
50
Tanaka K.
Watanabe T.
Shimamoto K.-Y.
Sahakitpichan P.
Fuji K.
Tetrahedron Lett.
1999,
40:
6599
51
Dai W.-M.
Lau CW.
Tetrahedron Lett.
2001,
42:
2541
52
Bestmann HJ.
Tömösközi I.
Tetrahedron
1968,
24:
3299
53 The absolute configuration of the product was only tentatively assigned.
54
Pinsard P.
Lellouche J.-P.
Beaucourt J.-P.
Grée R.
Tetrahedron Lett.
1990,
31:
1137
55a
Noyori R.
Tokunaga M.
Kitamura M.
Bull. Chem. Soc. Jpn.
1995,
68:
36
55b
Ward RS.
Tetrahedron: Asymmetry
1995,
6:
1475
55c
Caddick S.
Jenkins K.
Chem. Soc. Rev.
1996,
25:
447
56
Narasaka K.
Hidai E.
Hayashi Y.
Gras J.-L.
J. Chem. Soc., Chem. Commun.
1993,
102
57
Rein T.
Kreuder R.
von Zezschwitz P.
Wulff C.
Reiser O.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1023
58 This can be explained by the fact that the slower reacting enantiomer is continuously racemized and thus not accumulated as in an ordinary kinetic resolution.
59
Gante J.
Angew. Chem., Int. Ed. Engl.
1994,
33:
1699 ; and references therein
60a
Vedejs E.
Chen X.
J. Am. Chem. Soc.
1997,
119:
2584
60b
Bertozzi F.
Crotti P.
Macchia F.
Pineschi M.
Feringa BL.
Angew. Chem. Int. Ed.
2001,
40:
930 ; and references therein
61
Pedersen TM.
Jensen JF.
Humble RE.
Rein T.
Tanner D.
Bodmann K.
Reiser O.
Org. Lett.
2000,
2:
535
62
Pedersen TM.
Hansen EL.
Rein T.
Kane J.
Helquist P.
Norrby P.-O.
Tanner D.
J. Am. Chem. Soc.
2001,
123:
9738
63 This is of course primarily an issue in intermolecular reactions, where the functional groups involved in the reaction can be present in different amounts.
64
Schreiber SS.
Schreiber TS.
Smith DB.
J. Am. Chem. Soc.
1987,
109:
1525
65a
Trost BM.
Curran DP.
J. Am. Chem. Soc.
1980,
102:
5699
65b
Trost BM.
Curran DP.
Tetrahedron Lett.
1981,
22:
4929
66 Later research indicates that the addition step is irreversible also for stabilized ylides, see: Vedejs E.
Peterson MJ.
Top. Stereochem.
1994,
21:
1
67
Tanaka K.
Watanabe T.
Ohta Y.
Fuji K.
Tetrahedron Lett.
1997,
38:
8943
68a
Kann N.
Rein T.
J. Org. Chem.
1993,
58:
3802
68b
Tullis JS.
Vares L.
Kann N.
Norrby P.-O.
Rein T.
J. Org. Chem.
1998,
63:
8284
68c
Rein T.
Vares L.
Kawasaki I.
Pedersen TM.
Norrby P.-O.
Brandt P.
Tanner D.
Phosphorus, Sulfur, and Silicon
1999,
144-146:
169
69a
Vares L.
Rein T.
Org. Lett.
2000,
2:
2611
69b Vares, L.; Rein, T., manuscript in preparation.
70
Mandai T.
Kaihara Y.
Tsuji J.
J. Org. Chem.
1994,
59:
5847