References
<A NAME="RD01702ST-1">1</A>
New address: Novartis Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex,
RH12 5AB, UK.
<A NAME="RD01702ST-2A">2a</A>
Wahlestedt C.
Good L.
Curr. Opin. Drug Discov. Dev.
1999,
2:
142
<A NAME="RD01702ST-2B">2b</A>
Bennett CF.
Exp. Opin. Invest. Drugs
1999,
8:
237
<A NAME="RD01702ST-2C">2c</A>
Ma DDF.
Rede T.
Naqvi NA.
Cook PD.
Biotechnol. Annu. Rev.
2000,
5:
155
<A NAME="RD01702ST-2D">2d</A>
Bennett CF.
Butler M.
Cook PD.
Geary RS.
Levin AA.
Mehta R.
Teng C.-L.
Deshmukh H.
Tillman L.
Hardee G.
Gene Ther.
Marcel Dekker Inc.;
New York:
2000.
p.305
<A NAME="RD01702ST-2E">2e</A>
Uhlmann E.
Curr. Opin. Drug Discovery Dev.
2000,
3:
203
<A NAME="RD01702ST-2F">2f</A>
Galderisi U.
Cipollaro M.
Cascino A.
Emerging Drugs
2001,
6:
69
<A NAME="RD01702ST-3A">3a</A>
Freier SM.
Altmann K.-H.
Nucleic Acids Res.
1997,
25:
4429
<A NAME="RD01702ST-3B">3b</A>
Altmann K.-H.
Cuenoud B.
Von Matt P. In
Applied Antisense Oligonucleotide Technology
Krieg AM.
Stein CA.
Wiley-Liss Inc.;
New York:
1998.
<A NAME="RD01702ST-3C">3c</A>
Egli M.
Gryaznov SM.
Cell. Mol. Life Sci.
2000,
57:
1440
<A NAME="RD01702ST-3D">3d</A>
Engels JW.
Uhlmann E.
Pharm. Aspects Oligonucleotides
2000,
35
<A NAME="RD01702ST-3E">3e</A>
An H.
Wang T.
Maier MA.
Manoharan M.
Ross BS.
Cook PD.
J. Org. Chem.
2001,
66:
2789
<A NAME="RD01702ST-4A">4a</A>
Crooke ST.
Lemonidis KM.
Neilson L.
Griffey R.
Lesnik EA.
Monia BP.
Biochem.
1995,
312:
599
<A NAME="RD01702ST-4B">4b</A>
McKay RA.
Miraglia LJ.
Cummins LL.
Owens SR.
Sasmor H.
Dean NM.
J. Biol. Chem.
1999,
274:
1715
<A NAME="RD01702ST-4C">4c</A>
Cramer H.
Pfleiderer W.
Nuleosides, Nucleotides, Nucleic Acids
2000,
19:
1765
<A NAME="RD01702ST-4D">4d</A>
Malchere C.
Verheijien J.
Van Der Laan S.
Bastide L.
Van Boom J.
Lebleu B.
Robbins I.
Antisense Nucleic Acid Drug Dev.
2000,
10:
463
<A NAME="RD01702ST-4E">4e</A>
Kværnø L.
Wengel J.
Chem. Commun.
2001,
1419
<A NAME="RD01702ST-5">5</A>
Fairhurst RA.
Collingwood SP.
Lambert D.
Taylor RJ.
Synlett
2001,
467
<A NAME="RD01702ST-6">6</A>
Fairhurst RA.
Collingwood SP.
Lambert D.
Synlett
2001,
473
<A NAME="RD01702ST-7A">7a</A>
Griffey RH.
Lesnik E.
Freier S.
Sanghvi YS.
Teng K.
Kawasaki A.
Guinosso C.
Wheeler P.
Mohan V.
Cook PD.
ACS Symp. Ser.
1994,
580:
212
<A NAME="RD01702ST-7B">7b</A>
Manoharan M.
Biochim. Biophys. Acta
1999,
1489:
117
<A NAME="RD01702ST-8A">8a</A>
Inoue H.
Hayase Y.
Imura A.
Iwai S.
Miura K.
Ohtsuka E.
Nucleic Acids Res.
1987,
15:
6131
<A NAME="RD01702ST-8B">8b</A>
Lamond AI.
Sproat BS.
FEBS Lett.
1993,
325:
123
<A NAME="RD01702ST-9A">9a</A>
De Mesmaeker A.
Lesueur C.
Bévièrre M.-O.
Waldner A.
Fritsch V.
Wolf VF.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2790
<A NAME="RD01702ST-9B">9b</A>
De Mesmaeker A.
Lebreton J.
Jouanno C.
Fritsch V.
Wolf RM.
Wendeborn S.
Synlett
1997,
1287
<A NAME="RD01702ST-9C">9c</A>
Pfundheller HM.
Wengel J.
Bioorg. Med. Chem. Lett.
1999,
9:
2667
<A NAME="RD01702ST-10">10</A>
Huang J.
McElroy EB.
Widlanski TS.
J. Org. Chem.
1994,
59:
3520
<A NAME="RD01702ST-11">11</A>
Reaction conditions were as described in ref.
[5]
Flash column chromatography was performed using Merck Silica Gel 60 (0.040-0.063 mm).
NMR spectra were recorded with a Brucker AC400 instrument. Key distinguishing 1H resonances for each diastereoisomer are assigned. 31P NMR shifts are given as ppm values relative to phosphoric acid. Mass spectroscopy
was carried out using a Fisons Instruments VG Platform II spectrometer. A reaction
carried out on a 3.11 mmol scale gave;
5: White amorphous foam; 1.07 g; 31P NMR (CDCl3, 162 MHz): δ = 32.52 ppm; 1H NMR (CDCl3, 400 MHz): δ = 9.67 (br s, 1 H), 9.52 (s, br, 1 H), 7.69-7.61 (m, 4 H), 7.45-7.34
(m, 7 H), 7.13 (s, 1 H), 6.10-6.02 (m, 1 H, H1′ upper sugar), 5.50 (d, J = 2 Hz, 1 H, H1′ lower sugar), 4.26-3.64 (m, 8 H), 3.50 (s, 3 H), 3.36-3.17 (m, 3
H), 2.74-2.61 (m, 1 H), 2.51-2.42 (m, 1 H), 2.32-2.20 (m, 1 H), 2.04-1.82 (m, 2 H),
1.84 (s, 3 H), 1.74-1.59 (m, 1 H), 1.58 (s, 3 H), 1.27 (t, J = 7 Hz, 3 H), 1.04 (s, 9 H). MS (ES+): m/z (%) = 840(27) [M + H], 862(100) [M + Na].
6: White amorphous foam; 0.94 g; 31P NMR (CDCl3, 162 MHz): δ = 32.81 ppm; 1H NMR (CDCl3, 400 MHz): δ = 9.38 (br s, 1 H), 9.17 (s, br, 1 H), 7.70-7.62 (m, 4 H), 7.44-7.34
(m, 7 H), 7.13 (s, 1 H), 6.14-6.06 (m, 1 H, H1′ upper sugar), 5.55 (d, J = 2 Hz, 1 H, H1′ lower sugar), 4.24-3.64 (m, 8 H), 3.51 (s, 3 H), 3.50-3.18 (m, 3
H), 2.80-2.68 (m, 1 H), 2.50-2.39 (m, 1 H), 2.34-2.23 (m, 1 H), 2.01-1.84 (m, 1 H),
1.84 (s, 3 H), 1.77-1.58 (m, 2 H), 1.61 (s, 3 H), 1.20-1.10 (m, 3 H), 1.04 (s, 9
H). MS (ES+): m/z (%) = 840(8) [M + H], 862(100) [M + Na].
<A NAME="RD01702ST-12A">12a</A>
Kim CH.
Marquez VE.
Broder S.
Mitsuya H.
Driscoll JS.
J. Med. Chem.
1987,
30:
862
<A NAME="RD01702ST-12B">12b</A>
Ross BS.
Springer RH.
Vasquez G.
Andrews RS.
Cook PD.
Acevedo OL.
J. Heterocycl. Chem.
1994,
31:
765
<A NAME="RD01702ST-13">13</A>
Reaction conditions were as described in ref.
[5]
A reaction carried out on a 1.46 mmol scale gave;
13: White amorphous foam; 1.54 g; 31P NMR (CDCl3, 162 MHz): δ = 32.70 ppm; 1H NMR (CDCl3, 400 MHz): δ = 8.62 (s, 1 H), 8.15 (d, 2 H, J = 7 Hz), 7.58-7.44 (m, 8 H), 7.35-7.31 (m, 1 H), 7.30-7.17 (m, 16 H), 7.08 (s, 1
H), 5.96-5.90 (m, 1 H, H1′ upper sugar), 5.42 (d, 1 H, J = 2 Hz, H1′ lower sugar), 3.97-3.89 (m, 1 H), 3.86-3.77 (m, 2 H), 3.69-3.53 (m, 4
H), 3.10 (s, 3 H), 2.98-2.81 (m, 2 H), 2.76-2.63 (m, 1 H), 2.59-2.48 (m, 1 H), 2.29-2.20
(m, 1 H), 2.03-1.94 (m, 1 H), 1.91 (s, 3 H), 1.76-1.60 (m, 1 H), 1.44 (s, 3 H), 1.38-1.14
(m, 1 H), 1.07-0.99 (m, 3 H), 0.94 (s, 9 H), 0.91 (s, 9 H). Minor (S
P)-diastereoisomer; 31P NMR (CDCl3, 162 MHz): δ = 31.71 ppm; 1H NMR (CDCl3, 400 MHz): key distinguishing resonances δ = 5.90-5.83 (m, 1 H, H1′ upper sugar),
5.29 (d, 1 H, J = 2 Hz, H1′ lower sugar).
<A NAME="RD01702ST-14A">14a</A> Oligonucleotides were prepared using an ABI 390 DNA synthesiser following standard
phosphoramidite chemistry, according to:
Gait: MJ.
Oligonucleotide Synthesis: A Practical Approach
IRL Press;
Oxford:
1984.
<A NAME="RD01702ST-14B">14b</A>
For the steps involving incorporation of modified dimers, double couplings with double
reaction times were employed.
<A NAME="RD01702ST-15A">15a</A> The thermal denaturation of DNA/RNA hybrids was performed at 260 nm using a
Gifford Response II spectrophotometer (Ciba-Corning Diagnostics Corp., Oberlin, OH)
absorbance vs. temperature profiles were measured at 4 µm of each strand in 10 mM
phosphate pH 7.0 (Na salts), 100 mM total (Na+) 0.1 mM EDTA. Tm’s were obtained from fits of absorbance vs. temperature curves to a two-state model
with linear slope baselines:
Freier SM.
Albergo TD.
Turner DH.
Biopolymers
1982,
22:
1107
<A NAME="RD01702ST-15B">15b</A>
All values are averages of at least three experiments. The absolute error of the Tm values is ±0.5 °C.
<A NAME="RD01702ST-16">16</A>
Martin P.
Helv. Chim. Acta
1995,
78:
486
<A NAME="RD01702ST-17A">17a</A>
Pless RC.
Ts’o POP.
Biochemistry
1977,
16:
1239
<A NAME="RD01702ST-17B">17b</A>
Summers MF.
Powell C.
Egan W.
Byrd RA.
Wilson WD.
Zon G.
Nucleic Acids Res.
1986,
14:
7421
<A NAME="RD01702ST-17C">17c</A>
Ferguson DM.
Kollman PA.
Antisense Research and Development
1991,
1:
243
<A NAME="RD01702ST-18">18</A>
Sanghvi YS.
Hoke GD.
Freier SM.
Zounes MC.
Gonzalez C.
Cummins L.
Sasmor H.
Cook PD.
Nucleic Acids Res.
1993,
21:
3197