Subscribe to RSS
DOI: 10.1055/s-2002-25332
Nucleic Acid Containing 3′-C-P-N-5′ Ethyl Phosphonamidate Ester and 2′-Methoxy Modifications in Combination; Synthesis and Hybridisation
Properties
Publication History
Publication Date:
07 February 2007 (online)
Abstract
The preparation of thymidine-thymidine and thymidine-5-methylcytidine dinucleosides containing a 3′-C-P-N-5′ ethyl phosphonamidate ester linkage, with defined phosphorus stereochemistry, in combination with a 2′-methoxy substituent in the lower sugar residue, is described. Incorporation of these dinucleosides into DNA oligonucleotides and the effect upon duplex stability with complimentary RNA is reported.
Key words
antisense - modified oligonucleotides - nucleosides - phosphorus - stereoselective
-
2a
Wahlestedt C.Good L. Curr. Opin. Drug Discov. Dev. 1999, 2: 142 -
2b
Bennett CF. Exp. Opin. Invest. Drugs 1999, 8: 237 -
2c
Ma DDF.Rede T.Naqvi NA.Cook PD. Biotechnol. Annu. Rev. 2000, 5: 155 -
2d
Bennett CF.Butler M.Cook PD.Geary RS.Levin AA.Mehta R.Teng C.-L.Deshmukh H.Tillman L.Hardee G. Gene Ther. Marcel Dekker Inc.; New York: 2000. p.305 -
2e
Uhlmann E. Curr. Opin. Drug Discovery Dev. 2000, 3: 203 -
2f
Galderisi U.Cipollaro M.Cascino A. Emerging Drugs 2001, 6: 69 -
3a
Freier SM.Altmann K.-H. Nucleic Acids Res. 1997, 25: 4429 -
3b
Altmann K.-H.Cuenoud B.Von Matt P. In Applied Antisense Oligonucleotide TechnologyKrieg AM.Stein CA. Wiley-Liss Inc.; New York: 1998. -
3c
Egli M.Gryaznov SM. Cell. Mol. Life Sci. 2000, 57: 1440 -
3d
Engels JW.Uhlmann E. Pharm. Aspects Oligonucleotides 2000, 35 -
3e
An H.Wang T.Maier MA.Manoharan M.Ross BS.Cook PD. J. Org. Chem. 2001, 66: 2789 -
4a
Crooke ST.Lemonidis KM.Neilson L.Griffey R.Lesnik EA.Monia BP. Biochem. 1995, 312: 599 -
4b
McKay RA.Miraglia LJ.Cummins LL.Owens SR.Sasmor H.Dean NM. J. Biol. Chem. 1999, 274: 1715 -
4c
Cramer H.Pfleiderer W. Nuleosides, Nucleotides, Nucleic Acids 2000, 19: 1765 -
4d
Malchere C.Verheijien J.Van Der Laan S.Bastide L.Van Boom J.Lebleu B.Robbins I. Antisense Nucleic Acid Drug Dev. 2000, 10: 463 -
4e
Kværnø L.Wengel J. Chem. Commun. 2001, 1419 - 5
Fairhurst RA.Collingwood SP.Lambert D.Taylor RJ. Synlett 2001, 467 - 6
Fairhurst RA.Collingwood SP.Lambert D. Synlett 2001, 473 -
7a
Griffey RH.Lesnik E.Freier S.Sanghvi YS.Teng K.Kawasaki A.Guinosso C.Wheeler P.Mohan V.Cook PD. ACS Symp. Ser. 1994, 580: 212 -
7b
Manoharan M. Biochim. Biophys. Acta 1999, 1489: 117 -
8a
Inoue H.Hayase Y.Imura A.Iwai S.Miura K.Ohtsuka E. Nucleic Acids Res. 1987, 15: 6131 -
8b
Lamond AI.Sproat BS. FEBS Lett. 1993, 325: 123 -
9a
De Mesmaeker A.Lesueur C.Bévièrre M.-O.Waldner A.Fritsch V.Wolf VF. Angew. Chem., Int. Ed. Engl. 1996, 35: 2790 -
9b
De Mesmaeker A.Lebreton J.Jouanno C.Fritsch V.Wolf RM.Wendeborn S. Synlett 1997, 1287 -
9c
Pfundheller HM.Wengel J. Bioorg. Med. Chem. Lett. 1999, 9: 2667 - 10
Huang J.McElroy EB.Widlanski TS. J. Org. Chem. 1994, 59: 3520 -
12a
Kim CH.Marquez VE.Broder S.Mitsuya H.Driscoll JS. J. Med. Chem. 1987, 30: 862 -
12b
Ross BS.Springer RH.Vasquez G.Andrews RS.Cook PD.Acevedo OL. J. Heterocycl. Chem. 1994, 31: 765 -
14a Oligonucleotides were prepared using an ABI 390 DNA synthesiser following standard phosphoramidite chemistry, according to:
Gait: MJ. Oligonucleotide Synthesis: A Practical Approach IRL Press; Oxford: 1984. -
14b
For the steps involving incorporation of modified dimers, double couplings with double reaction times were employed.
-
15a The thermal denaturation of DNA/RNA hybrids was performed at 260 nm using a Gifford Response II spectrophotometer (Ciba-Corning Diagnostics Corp., Oberlin, OH) absorbance vs. temperature profiles were measured at 4 µm of each strand in 10 mM phosphate pH 7.0 (Na salts), 100 mM total (Na+) 0.1 mM EDTA. Tm’s were obtained from fits of absorbance vs. temperature curves to a two-state model with linear slope baselines:
Freier SM.Albergo TD.Turner DH. Biopolymers 1982, 22: 1107 -
15b
All values are averages of at least three experiments. The absolute error of the Tm values is ±0.5 °C.
- 16
Martin P. Helv. Chim. Acta 1995, 78: 486 -
17a
Pless RC.Ts’o POP. Biochemistry 1977, 16: 1239 -
17b
Summers MF.Powell C.Egan W.Byrd RA.Wilson WD.Zon G. Nucleic Acids Res. 1986, 14: 7421 -
17c
Ferguson DM.Kollman PA. Antisense Research and Development 1991, 1: 243 - 18
Sanghvi YS.Hoke GD.Freier SM.Zounes MC.Gonzalez C.Cummins L.Sasmor H.Cook PD. Nucleic Acids Res. 1993, 21: 3197
References
New address: Novartis Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex, RH12 5AB, UK.
11Reaction conditions were as described in ref.
[5]
Flash column chromatography was performed using Merck Silica Gel 60 (0.040-0.063 mm). NMR spectra were recorded with a Brucker AC400 instrument. Key distinguishing 1H resonances for each diastereoisomer are assigned. 31P NMR shifts are given as ppm values relative to phosphoric acid. Mass spectroscopy was carried out using a Fisons Instruments VG Platform II spectrometer. A reaction carried out on a 3.11 mmol scale gave;
5: White amorphous foam; 1.07 g; 31P NMR (CDCl3, 162 MHz): δ = 32.52 ppm; 1H NMR (CDCl3, 400 MHz): δ = 9.67 (br s, 1 H), 9.52 (s, br, 1 H), 7.69-7.61 (m, 4 H), 7.45-7.34 (m, 7 H), 7.13 (s, 1 H), 6.10-6.02 (m, 1 H, H1′ upper sugar), 5.50 (d, J = 2 Hz, 1 H, H1′ lower sugar), 4.26-3.64 (m, 8 H), 3.50 (s, 3 H), 3.36-3.17 (m, 3 H), 2.74-2.61 (m, 1 H), 2.51-2.42 (m, 1 H), 2.32-2.20 (m, 1 H), 2.04-1.82 (m, 2 H), 1.84 (s, 3 H), 1.74-1.59 (m, 1 H), 1.58 (s, 3 H), 1.27 (t, J = 7 Hz, 3 H), 1.04 (s, 9 H). MS (ES+): m/z (%) = 840(27) [M + H], 862(100) [M + Na].
6: White amorphous foam; 0.94 g; 31P NMR (CDCl3, 162 MHz): δ = 32.81 ppm; 1H NMR (CDCl3, 400 MHz): δ = 9.38 (br s, 1 H), 9.17 (s, br, 1 H), 7.70-7.62 (m, 4 H), 7.44-7.34 (m, 7 H), 7.13 (s, 1 H), 6.14-6.06 (m, 1 H, H1′ upper sugar), 5.55 (d, J = 2 Hz, 1 H, H1′ lower sugar), 4.24-3.64 (m, 8 H), 3.51 (s, 3 H), 3.50-3.18 (m, 3 H), 2.80-2.68 (m, 1 H), 2.50-2.39 (m, 1 H), 2.34-2.23 (m, 1 H), 2.01-1.84 (m, 1 H), 1.84 (s, 3 H), 1.77-1.58 (m, 2 H), 1.61 (s, 3 H), 1.20-1.10 (m, 3 H), 1.04 (s, 9 H). MS (ES+): m/z (%) = 840(8) [M + H], 862(100) [M + Na].
Reaction conditions were as described in ref.
[5]
A reaction carried out on a 1.46 mmol scale gave;
13: White amorphous foam; 1.54 g; 31P NMR (CDCl3, 162 MHz): δ = 32.70 ppm; 1H NMR (CDCl3, 400 MHz): δ = 8.62 (s, 1 H), 8.15 (d, 2 H, J = 7 Hz), 7.58-7.44 (m, 8 H), 7.35-7.31 (m, 1 H), 7.30-7.17 (m, 16 H), 7.08 (s, 1 H), 5.96-5.90 (m, 1 H, H1′ upper sugar), 5.42 (d, 1 H, J = 2 Hz, H1′ lower sugar), 3.97-3.89 (m, 1 H), 3.86-3.77 (m, 2 H), 3.69-3.53 (m, 4 H), 3.10 (s, 3 H), 2.98-2.81 (m, 2 H), 2.76-2.63 (m, 1 H), 2.59-2.48 (m, 1 H), 2.29-2.20 (m, 1 H), 2.03-1.94 (m, 1 H), 1.91 (s, 3 H), 1.76-1.60 (m, 1 H), 1.44 (s, 3 H), 1.38-1.14 (m, 1 H), 1.07-0.99 (m, 3 H), 0.94 (s, 9 H), 0.91 (s, 9 H). Minor (S
P)-diastereoisomer; 31P NMR (CDCl3, 162 MHz): δ = 31.71 ppm; 1H NMR (CDCl3, 400 MHz): key distinguishing resonances δ = 5.90-5.83 (m, 1 H, H1′ upper sugar), 5.29 (d, 1 H, J = 2 Hz, H1′ lower sugar).