Subscribe to RSS
DOI: 10.1055/s-2002-31894
VO(acac)2/TBHP Catalyzed Epoxidation of 2-(2-Alkenyl)phenols. Highly Regio- and Diastereoselective Oxidative Cyclization to 2,3-Dihydro-benzofuranols and 3-Chromanols
Publication History
Publication Date:
07 February 2007 (online)
Abstract
The VO(acac)2/TBHP (1.5 mol%/1.3 equiv) system has been successfully used for the epoxidation of variously double bond substituted 2-(2-alkenyl)phenols under mild conditions. Moreover, a one-pot conversion to 2,3-dihydrobenzofuranols and 3-chromanols is achieved with high or complete regio- and diastereoselectivity in the presence of catalytic amounts of TFA (20 mol%). This metal-catalyzed methodology was shown to be more practical and superior to the previously employed m-CPBA for the epoxidation and the oxidative cyclization of 2-(2-alkenyl)phenols.
Key words
epoxidation - regio- and diastereoselectivity - 2-(2-alkenyl)phenols - oxidative cyclization - vanadium
-
1a
Finn MG.Sharpless KB. In Asymmetric SynthesisMorrison JD. Academic Press; New York: 1985. p.247 -
1b
Rossiter BE. In Asymmetric SynthesisMorrison JD. Academic Press; New York: 1985. p.193 -
2a
Sharpless KB.Michaelson RC. J. Am. Chem. Soc. 1973, 95: 6136 -
2b
Sharpless KB.Verhoeven TR. Aldrichimica Acta 1979, 12: 63 -
2c
Itoh T.Jitsukawa K.Kaneda K.Teranishi S. J. Am. Chem. Soc. 1979, 101: 159 - 3
Mihelich ED.Daniels K.Eickhoff D. J. Am. Chem. Soc. 1981, 103: 7690 -
4a
Della Sala G.Giordano L.Lattanzi A.Proto A.Scettri A. Tetrahedron 2000, 56: 3567 -
4b
Lattanzi A.Della Sala G.Russo M.Scettri A. Synlett 2001, 1479 -
5a
De Bernardi M.Vidari G.Vita Finzi P.. Tetrahedron 1992, 48: 7331 -
5b
David M.Sauleau J.Sauleau A. Bull. Soc. Chim. Fr. 1993, 130: 527 -
5c
Bouzbouz S.Kirschleger B. Synthesis 1994, 714 - 6
Murray RDH.Sutchliffe M.McCabe PH. Tetrahedron 1971, 27: 4901 - 7
Blunt SB.Chen T.-B.Wiemer DF. J. Nat. Prod. 1998, 61: 1400 - 8
Hosokawa T.Kono T.Shinohara T.Murahashi S.-I. J. Organomet. Chem. 1989, 370: C13 -
9a
Nakata T.Schimd G.Vranesic B.Okigawa M.Smith-Palmer T.Kishi Y. J. Am. Chem. Soc. 1978, 100: 2933 -
9b
Hanessian S.Cooke NG.DeHoff B.Sakito Y. J. Am. Chem. Soc. 1990, 112: 5276 -
9c
Hashimoto M.Harigaya H.Yanagiya M.Shirahama H. J. Org. Chem. 1991, 56: 2299 - 10 Compounds 1 were synthesized according to:
Barluenga J.Sanz R.Fananas F. Tetrahedron Lett. 1997, 38: 6103 - 13
Michelson RC.Palermo RE.Sharpless KB. J. Am. Chem. Soc. 1977, 99: 1990 - 14
Baldwin JE. J. Chem. Soc., Chem. Commun. 1976, 734 -
15a
Ishii H.Ishikawa T. Tetrahedron Lett. 1982, 23: 4245 -
15b
Xu X.de Guzman FS.Gloer JB.Shesrer CA. J. Org. Chem. 1992, 57: 6700 -
15c
Nozawa Y.Yamamoto K.Ito M.Sakai N.Mizoue K.Mizobe F.Hanada K. J. Antibiot. 1997, 50: 635 -
15d
Ramadas S.Krupadanam GLD. Tetrahedron: Asymmetry 2000, 11: 3375 -
16a The typical experimental procedure and work up for the oxidative cyclization is the same as reported for the epoxidation of 1, with the exception that TFA (15 µL, 0.20 mmol) was added after TBHP. Spectroscopic data for compound 3a matched with the literature:
Ramadas S.Krupadanam LD. Tetrahedron: Asymmetry 2000, 11: 3375 -
16b
3b was obtained as inseparable erythro/threo 85:15 mixture of diastereisomers. 1H NMR (400 MHz, CDCl3): δ (erythro-isomer, distinct signals) = 1.22 (3 H, d, J = 6.4 Hz), 1.92 (1 H, br s), 3.11 (1 H, dd, J = 15.5, 9.3 Hz), 4.17 (1 H, dq, J = 6.4, 3.4 Hz), 4.70 (1 H, dq, J = 8.8, 3.4 Hz). δ (threo-isomer, distinct signals) = 1.27 (3 H, d, J = 6.4 Hz), 2.38 (1 H, br s), 2.96, (1 H, dd, J = 15.6, 7.8 Hz), 3.84 (1 H, quint, J = 6.6 Hz), 4.56 (1 H, q, J = 9.2 Hz). Over-lapped signals δ = 3.23 (1 H, dd, J = 15.5, 8.4 Hz erythro;
1 H, threo), 6.76-6.79 (1 H, erythro; 1 H, threo, m), 6.83-6.86 (1 H, erythro; 1 H, threo, m), 7.08-7.12 (1 H, erythro; 1 H, threo, m), 7.16-7.18 (1 H, erythro; 1 H, threo, m). 13C NMR (100 MHz, CDCl3): δ = 17.6, 18.2, 29.2, 31.8, 68.1, 69.9, 109.0, 109.3, 120.5, 124.8, 124.9, 126.8, 127.7, 127.9, 159.3. IR (KBr): 750, 860, 898, 1233, 1462, 1481, 2931, 2973, 3351 cm-1. MS: m/z (%) = 164(76) [M+], 146(38), 131(100), 119(34), 107(20), 91(80). Anal. Calcd for C10H12O2: C, 73.15; H, 7.37. Found: C, 73.33; H, 7.26. 3c: 1H NMR (400 MHz, CDCl3): δ = 2.93 (1 H, dd, J = 16.0, 8.9 Hz), 3.10 (1 H, dd, J = 16.0, 5.3 Hz), 4.12-4.17 (1 H, m), 4.82 (1 H, d, J = 7.9 Hz), 6.91-6.95 (2 H, m), 7.09-7.47 (7 H, m). 13C NMR (100 MHz, CDCl3): δ = 32.7, 68.1, 81.8, 116.4, 120.0, 121.0, 127.0, 127.6, 128.6, 128.7, 129.9, 138.1, 153.9. IR (KBr): 700, 752, 1242, 1457, 1487, 2923, 3388 cm-1. MS: m/z (%) = 226(24) [M+], 210(42), 134(50), 120(37), 107(100), 91(89), 77(38). Anal. Calcd for C15H14O2: C, 79.62; H, 6.24. Found: C, 79.46; H, 6.11. 3d: 1H NMR (400 MHz, CDCl3): δ = 1.44 (3 H, s), 2.40 (1 H, bs), 2.90 (1 H, AB, J = 15.5 Hz), 3.25 (1 H, AB, J = 15.5 Hz), 3.63 (1 H, AB, J = 11.7 Hz), 3.68 (1 H, AB, J = 11.7 Hz), 6.74-6.76 (1 H, m), 6.82-6.87 (1 H, m), 7.09-7.11 (1 H, m), 7.13-7.16 (1 H, m). 13C NMR (100 MHz, CDCl3): δ = 23.1, 37.7, 68.2, 88.5, 109.4, 120.3, 125.1, 126.7, 127.9, 158.5. IR (KBr): 748, 883, 1241, 1459, 1480, 2924, 3420 cm-1. MS: m/z (%) = 164(62) [M+], 146(27), 133(100), 119(24), 105(71), 91(59). Anal. Calcd for C10H12O2: C, 73.15; H, 7.37. Found: C, 73.31; H, 7.29. 4e: 1H NMR (400 MHz, CDCl3): δ = 1.31 (3 H, s), 1.36 (3 H, s), 1.85 (1 H, bs), 2.77 (1 H, dd, J = 16.7, 5.5 Hz), 3.06 (1 H, dd, J = 16.7, 5.5 Hz), 3.80 (1 H, t, J = 5.1 Hz), 6.80-6.90 (2 H, m), 7.05-7.16 (2 H, m). 13C NMR (100 MHz, CDCl3): δ = 22.2, 24.7, 31.3, 69.7, 89.2, 117.2, 118.8, 120.5, 127.6, 130.0, 152.7. IR (KBr): 752, 854, 1257, 1456, 1487, 2923, 3342 cm-1. MS: m/z (%) = 178(82) [M+], 161(23), 145(65), 120(73), 107(100), 91(80), 77(28). Anal. Calcd for C11H14O2: C, 74.13; H, 7.92. Found: C, 74.35; H, 7.83. -
16c Spectroscopic data for compounds 3e matched with the literature:
Hosokawa T.Imada Y.Murahashi S.-I. Bull. Chem. Soc. Jpn. 1985, 58: 3282 -
16d
Spectroscopic data for 4f: 1H NMR (400 MHz, CDCl3): δ = 1.34 (3 H, s), 1.60 (3 H, s), 1.67 (3 H, s), 1.50-1.60 (2 H, m), 1.95 (1 H, bs), 2.15 (2 H, m), 2.78 (1 H, dd, J = 16.7, 5.8 Hz), 3.05 (1 H, dd, J = 16.7, 4.9 Hz), 3.86-3.89 (1 H, m), 5.07-5.11 (1 H, m), 6.75-6.95 (2 H, m), 7.03-7.20 (2 H, m). 13C NMR (100 MHz, CDCl3): δ = 17.5, 19.3, 21.6, 25.6, 31.1, 37.0, 68.1, 78.5, 117.2, 118.9, 120.5, 123.9, 127.6, 129.9, 131.9, 152.8. IR (KBr): 753, 855, 1257, 1456, 1487, 2924, 3400 cm-1. MS: m/z (%) = 246(58) [M+], 229(20), 194(96), 161(34), 145(39), 107(100), 91(41). Anal. Calcd for C16H22O2: C, 78.01; H, 9.00. Found: C, 78.20; H, 9.11. 3f: 1H NMR (400 MHz, CDCl3): δ = 1.31 (3 H, s), 1.60-1.50 (2 H, m), 1.63 (3 H, s), 1.69 (3 H, s), 1.87 (1 H, bs), 2.10-2.16 (2 H, m), 3.09 (1 H, dd, J = 15.7, 9.5 Hz), 3.22 (1 H, dd, J = 15.7, 8.9 Hz), 4.63 (1 H, t, J = 9.3), 5.08-5.14 (1 H, m), 6.70-6.90 (2 H, m), 7.05-7.18 (2 H, m). 13C NMR (100 MHz, CDCl3): δ = 17.6, 21.9, 23.0, 25.7, 30.3, 36.9, 73.5, 88.7, 109.1, 120.5, 124.2, 124.9, 127.1, 127.8, 132.0, 159.5. IR (KBr): 749, 872, 1238, 1445, 1480, 2928, 3405 cm-1. Anal. Calcd for C16H22O2: C, 78.01; H, 9.00. Found: C, 78.29; H, 9.18.
- 21
Porter LJ. In The Flavonoids, Advances in Research Since 1980Harborne JB. Chapman and Hall; London: 1994. p.23 - 22
Weinges K. Annalen 1958, 615: 203 - 23
van Rensburg H.van Heerden PS.Ferreira D. J. Chem. Soc., Perkin Trans. 1 1997, 3415 - 24
Inoue S.Asami M.Honda K.Shrestha KS.Takahashi M.Yoshino T. Synlett 1998, 679
References
Typical Experimental Procedure for the Epoxidation: To a stirred solution of anhyd CH2Cl2 (8 mL), under an argon atmosphere, were added VO(acac)2 (3.9 mg, 0.015 mmol) and 1 (1 mmol); then after 5 min TBHP (230 µL, 1.3 mmol of 5.5 M decane solution) was added. Upon completion, after monitoring on TLC using PE/Et2O mixtures, the solvent of the crude reaction mixture was partially removed in vacuo and then the concentrated crude mixture was filtered through a small pad of silica gel before 1H NMR analysis. The reaction mixture was purified by flash chromatography (PE/Et2O) to give the desired epoxides 2. 2a: 1H NMR (400 MHz, CDCl3): δ = 2.68-2.74 (2 H, m), 2.93 (1 H, t, J = 4.0 Hz), 3.22 (1 H, dd, J = 5.0, 2.4 Hz), 3.27-3.32 (1 H, m), 6.80-6.92 (2 H, m), 6.97 (1 H, s), 7.08-7.11 (1 H, m), 7.15-7.19 (1 H, m). 13C NMR (100 MHz, CDCl3): δ = 34.5, 48.0, 53.4, 116.8, 120.5, 123.1, 128.6, 130.9, 155.3. IR (KBr): 753, 848, 825, 1234, 1456, 1594, 2925, 3330 cm-1. MS: m/z (%) = 150(72) [M+], 131(100), 119(40), 91(97), 77(16). Anal. Calcd for C9H10O2: C, 71.98; H, 6.71. Found: C, 71.80; H, 6.66. 2b was obtained as inseparable (trans/cis 85:15) mixture of diastereoisomers. 1H NMR (400 MHz, CDCl3): δ (trans-isomer, distinct signals) = 1.33 (3 H, d, J = 4.9 Hz), 2.73 (1 H, dd, J = 14.9, 7.0 Hz), 3.17 (1 H, dd, J = 14.9, 2.0 Hz). δ (cis-isomer, distinct signals) = 1.49 (3 H, d, J = 5.4 Hz), 2.85 (1 H, dd, J = 9.3, 4.9 Hz), 2.91 (1 H, dd, J = 14.9, 3.2 Hz), 3.30 (1 H, quint, J = 5.4 Hz). Overlapped signals δ = 3.00-3.06 (2 H, trans; 1 H cis, m), 6.83-6.88 (1 H, trans; 1 H, cis, m), 6.90-6.92 (1 H, trans; 1 H, cis, m), 7.06-7.09 (1 H, trans; 1 H, cis, m), 7.14-7.16 (1 H, trans; 1 H, cis, m). 13C NMR (100 MHz, CDCl3): δ = 17.0, 17.5, 34.4, 56.1, 60.8, 68.1, 86.3, 109.0, 117.0, 120.4, 120.5, 123.4, 124.9, 127.8, 128.6, 130.8, 155.5. IR (KBr): 752, 842, 830, 1233, 1457, 1595, 2923, 3330 cm-1. MS: m/z (%) = 164(69) [M+], 146(30), 131(100), 119(29), 107(27), 91(73), 77(13). Anal. Calcd for C10H12O2: C, 73.15; H, 7.37. Found: C, 72.88; H, 7.46. 2c: 1H NMR (400 MHz, CDCl3): δ = 2.90 (1 H, dd, J = 14.9, 7.2 Hz), 3.29 (1 H, dd, J = 14.9, 2.0 Hz), 3.32-3.37 (1 H, m), 3.86 (1 H, d, J = 2.0 Hz), 6.60-6.69 (3 H, m), 7.10-7.39 (6 H, m). 13C NMR (100 MHz, CDCl3): δ = 34.6, 59.5, 63.6, 117.0, 120.7, 123.1, 125.7, 127.6, 128.5, 128.8, 131.0, 136.0, 155.4. IR (KBr): 698, 752, 1240, 1457, 1487, 2923, 3420 cm-1.
MS: m/z (%) = 226(16) [M+], 210(26), 134(58), 120(42), 107(100), 91(86), 77(34). Anal. Calcd for C15H14O2:
C, 79.62; H, 6.24. Found: C, 79.79; H, 6.32. 2d: 1H NMR (400 MHz, CDCl3): δ = 1.33 (3 H, s), 2.73 (1 H, AB, J = 15.0 Hz), 2.84 (1 H, AB, J = 4.1 Hz), 2.90 (1 H, AB, J
= 4.1 Hz), 3.31 (1 H, AB, J = 15.0 Hz), 6.83-6.87 (1 H, m), 6.92-6.94 (1 H, m), 7.03-7.06 (1 H, m), 7.15-7.19 (1 H, m), 7.55 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 20.1, 39.4, 55.5, 59.5, 117.3, 120.3, 122.9, 128.8, 131.5, 155.7. IR (KBr): 747, 861, 884, 1241, 1459, 1481, 2923, 3336 cm-1. MS: m/z (%) = 164(90) [M+], 146(30), 131(100), 119(35), 105(68), 91(87), 77(28). Anal. Calcd for C10H12O2: C, 73.15; H, 7.37. Found: C, 73.29; H, 7.45. 2e: 1H NMR (400 MHz, CDCl3): δ = 1.33 (3 H, s), 1.35 (3 H, s), 2.82 (1 H, J = 14.7, 9.8 Hz), 2.94 (1 H, dd, J = 14.7, 2.7 Hz), 3.04 (1 H, dd, J = 9.8, 2.7 Hz), 6.84-6.86 (1 H, m), 6.92-6.93 (1 H, m), 7.01 (1 H, s), 7.10-7.12 (1 H, m), 7.15-7.17 (1 H, m). 13C NMR (100 MHz, CDCl3): δ = 18.8, 24.6, 31.6, 61.0, 65.3, 116.9, 120.5, 124.8, 128.5, 130.6, 155.4. IR (KBr): 751, 870, 861, 1233, 1457, 1481, 2924, 3490 cm-1. MS: m/z (%) = 178(100) [M+], 161(49), 145(54), 120(32), 107(43), 91(48). Anal. Calcd for C11H14O2: C, 74.13; H, 7.92. Found: C, 73.95; H, 7.81. 2f: 1H NMR (400 MHz, CDCl3): δ = 1.49 (3 H, s), 1.61 (3 H, s), 1.68 (3 H, s), 1.60-1.70 (2 H, m), 2.06-2.11 (2 H, m), 2.84 (1 H, dd, J = 14.6, 9.4 Hz), 2.90 (1 H, dd, J = 14.6, 3.3 Hz), 3.04 (1 H, dd, J = 9.4, 3.3 Hz), 5.03-5.08 (1 H, m), 6.84-6.86 (1 H, m), 6.91-6.93 (1 H, m), 7.06 (1 H, s), 7.10-7.12 (1 H, m), 7.15-7.17 (1 H, m). 13C NMR (100 MHz, CDCl3): δ = 16.7, 17.6, 23.5, 25.6, 31.6, 38.4, 63.4, 64.5, 117.0, 120.5, 123.1, 124.3, 128.5, 130.6, 132.2, 155.5. IR (KBr): 751, 860, 855, 1233, 1456, 1479, 2923, 3325 cm-1. MS: m/z (%) = 246(64) [M+], 178(58), 145(40), 133(100), 107(56), 95(58), 91(42), 77(20). Anal. Calcd for C16H22O2: C, 78.01; H, 9.00. Found: C, 78.20; H, 8.89.
From 1H NMR analysis of the crude mixture a complete conversion of 1c was observed; partial decomposition of the final product during silica gel chromatography may be responsible of the lower isolated yield.
17The 2S*,3R* configuration was determined on the corresponding acetylated 4c by comparison with 1H NMR data reported in ref. [23]
18The 2S*,3R* configuration was determined by comparison with 1H NMR data reported in ref. [24]
19The erythro/threo ratio was determined by comparison with 1H NMR data reported in ref. [8]
20It is interesting to note that in the oxidative cyclization of bishomoallylic alcohols using VO(acac)2/TBHP/HOAc, the regioselective formation of tetrahydrofuranols through a 5-exo ring closure of the intermediate epoxides was observed, without loss of the stereoselectivity obtained in the epoxidation step. Although the formation of 6-endo products, tetrahydropyranols, had been possible via more stable tertiary carbocations, these compounds were not isolated. The authors invoked steric factors to justify the experimental results. See ref. [9c]